T-106.5600 Concurrent Programming Examination December 2012 / hsa
Be concise and clear. The shorter you can be, the better.

1. Three ascending integer sequences A[0..] , B[0..] and C[0..] contain at least one common value. Consider the
following program consisting of tree concurrent threads aimed to find the smallest of such values, X say, to reach
the final state R: {& = b = ¢ = X}, where it should terminate.

int a,c,b;
a = A[C]; b = B[0]l; ¢ = C[0]; i= j= k= 0;

co while true if (a < b) {i = i+l; a = A[i]};
// while true if (b < ¢} {j = j+1; b = B[j])};
// while true if (c < a) (k = k+l; ¢ = C[k]};

oc

a) Let’s assume, that the 1 f—statements in loop bodies are executed as atomic actions. Give an argument with a
proper invariant I that the program progresses and reaches the stateR: {a = b = ¢ = X }.

b) Assuming that each individual reference to the shared variables a, b and c is atomic. Explain whether or not
1 still an invariant of the program.

€) The program doesn’t terminate properly. Show how to enhance it for proper termination, and explain whether
or not R holds at the termination of your enhanced version both version a) and b).

2. Consider the simple bakery algorithm for two-process critical section;

Algorithm 5.1: Bakery algorithm (two processes)
integer np < 0, nqg « 0
P q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: np+ng+1 q2: ng < np+1
p3: await ng =0 or np < nq q3: await np = 0 or nq < np
pa: critical section q4: critical section
p5: np « 0 q5: ng <« 0

a) Show the safety with a proper invariant.

b) Find a scenario where the mutual exclusion does not hold when the statement p2 (symmetrically for q2) is
replaced by two statements “p2.1: temp <- ng” and “p2.2: np <- temp +1”.

¢) Give an argument using temporal logic whether the algorithm is fair, i.e. neither p or q will starve or not.

3. A bounded buffer is frequently implemented using a circular buffer, which is an array that is indexed modulo
its length:

5 % s W R %

n out

25 £ 2

oukt n

One variable, in, contains the index of the first empty space and another, out, the index of the first full space.

If in > out, there is data in buffer[out..in-1]; if in < out, there is data in buffer{out..N] and buffer(0..in-1];

if in = out, the buffer is empty. a) Prove that following algorithm 6.19 for the producer-consumer problem works
correctly, i.e. it will not cause under or overflow of the buffer. b) Will it work with multiple producers and
consumers? Justify your answer! If not, how should it be changed to make it work?

Algorithm 6.19: Producer-consumer (circular buffer)
dataType array [0..N] buffer

integer in, out — 0 Algorithm erratum: in p4 and g3, "modulo N"
semaphore notEmpty — (0.4) should be "modulo (N+1)". Note that the
. BEMARIDE Nt Cull & O) algorithm considers the buffer to be full when
producer consumer . ;
e i e one element in the array is unused,
loop forever loop forever
pl. d « produce ql: wait(notEmpty)
p2 wait(notFull) q2: d + bufferfout]
p3. bufferfin] ~—d q3 out — (out+1) modulo N
p4. in « (in+1) modulo N q4: signal(notFull)
ps signal(notEmpty) 95 consume(d)

4. One-lane bridge. Cars coming from north and south have to cross a river along a very long and narrow one-
lane bridge. Cars driving to the same direction may be on the bridge at the same time, but cars heading to oppo-
site directions can’t. Consider the following monitor solution One_lane_bridge to the problem, where the
cars are processes calling the public methods cross_from_North () and cross_from _South () .

monitor One_lane bridge {

int ns =0; //north-south cars on the bridge
int sn =0; //scuth-north cars on the brigde
cond ns_c: //condition to enter from north
cond sn_c; //condition to enter from south

private procedure startNorth() {
if (sn > 0) wait(ns_c);
ns++
}
private procedure endSouth() {
ng-——;
if (ns == 0) signal_agll(sn_c)):; //signals possible waiting sn cars
}
public cross_from Nerth() { // this is needed to provide a simpler API
startNorth();
// morth-south crossing operation is embedded here
endSouth () ;
3

// the south-north direction is symmetric

a) Show by using proper invariants that the solution is safe and does not cause any unnecessary waiting.

b) Transform the example code in question 4 to a similar Java version.
A,

Y (ﬁ'
5. AW
5. Solve the five dining philosophers problem using tuple-space, so that the utilization rate of the forks is s
maximal, i.e. a philosopher don’t reserve any forks until both of them are available after which he starts eating
immediately. Hint: If a philosopher can’t start eating, he goes into an explicit waiting state “hungry”, so that when
either of his neighbours leaves eating, he can be awakened to eat if both of his forks are available. Define clearly
the meaning of the different tuple types and elements used in them and attach appropriate tags to them. The
get to_eat() and end_eat() operations should be simple algorithms without loops and using no other global
variables except tuples.
Linda tuple-space primitives are: postnote ('tag’, ..}, readnote (‘tag’, ..), removenote
(‘tag’,..) - Indicate clearly ina readnote(..),or removenote(..)operation when a matching tuple with an
element value equal to a program variable value is sought for (syntax “ v="), from the case where an element
value of a otherwise matching tuple is just assigned to a program variable (syntax “ v*).

