Support material permitted: attached collection of formulas.

Write on each and every page: Code and name of the course Name and student number Department and date

1.

Discuss and compare the following concepts, physical meaning and practical applications: a) Biot number and Nusselt number. List and analyze the appropriate formulas.

b) Hydrodynamic and thermal entry lengths, fully developed flow. In which region is the convection heat transfer coefficient h larger?

## 2.

a) A wall consists of two layers, with thicknesses respectively  $l_1=10$ cm and  $l_2=15$ cm, while the thermal conductivities  $k_1$  and  $k_2$  are unknown.

The two sides of the wall are at temperatures  $T_L = 50^{\circ}$ C and  $T_R = 20^{\circ}$ C. Calculate the thermal conductivities  $k_1$  and  $k_2$ , knowing that the heat flux is measured to be  $q'' = 216 W/m^2$ .

b) A 1-meter-long cylindric pipe, with internal diameter  $D_1=30$ cm, thickness 5cm and k=2.5 W/mK transports hot water, with temperature  $T_1 = 85$ °C and  $h_1 = 12W/m^2K$ . We want to cover this pipe with two insulators.

The ambient temperature is  $T_{\infty} = 5^{\circ}$ C with  $h_{\infty} = 25 W/m^2 K$ .

Two materials A and B are chosen for the covering, with thermal conductivities  $k_A = 0.52 k_B$ , and the same thickness 3cm.

Examine the two design options: pipe->A->B or pipe->B->A, calculate the thermal resistance and determine which one is the better choice.

## Rak-43.3410 Building Physics Design I

3.

In an industrial facility built right next to a lake, there is need of a steady air flow at temperature  $15^{\circ}$ C entering a certain machine room. A circular duct of diameter D=20 cm is thus installed under the surface of the lake, whose waters have an average temperature of 5°C. The pipe takes air from another building at 25°C, and air enters the duct with velocity 3 m/s.

a) You are asked by the company to determine where to install this pipe. Do this by computing the portion L of the pipe which is exposed to heat transfer with the water, to obtain the outlet temperature Tout= $15^{\circ}$ C.

Assume the surface of the duct to be at the lake temperature.



b) How can you calculate the pumping power  $\dot{W}_p \propto \Delta P$  required to overcome the pressure drop  $\Delta P$  in the duct? Remember that N = J/m, and use dimensional analysis to find the unknown proportionality constant in the formula for  $\dot{W}_p$  given above. If you can calculate the pumping power explicitly, assume a smooth pipe.

## 4.

Discuss the following concepts:

a) Blackbody radiation, Stefan-Boltzmann law and the view factor.

b) Some 20m x 30m water container contains water at temperature  $T = 30^{\circ}$ C. Assume that the sky above is at  $T_{sky} = 17^{\circ}$ C and compute the radiation heat rate. Remember that the emissivity of water is  $\epsilon = 0.95$ .

c) Two parallel disks with diameters  $D_2 = 20cm$  and  $D_1 = 30cm$  are located on top of each other and separated by L = 0.15m. The respective temperatures are  $T_2 = 600K$  and  $T_1 = 1230K$ . Treating both the disks as blackbodies, determine the rate of radiation heat transfer between these.



## 5.

Choose one of the following problems (specifying the time step necessary for your calculation).

a) A 4 cm large plate at an initial temperature of  $T=80^{\circ}C$  is suddenly immersed into a cold environment with  $T=0^{\circ}C$  through convection.

Use the unsteady and explicit scheme for a three-node grid to determine the transient response of the temperatures of the plate for one time step assuming that  $\alpha = \frac{k}{\rho c_p} = 10 \times 10^{-6} m^2/s$ ,  $h = 80 W/m^2 K$ .

b) A 4 cm wooden plate at initial 30% moisture content is suddenly placed into a 15% environment. Assume the surface moisture content of the plate to be the same as that of the environment. Use the unsteady and explicit scheme for a three-node to determine the transient response of the moisture contents of the plate for one time step, assuming that the moisture diffusion coefficient D is  $0.1 \times 10^{-5} \ cm^2 \ /s$  at 0%,  $1.6 \times 10^{-5} \ cm^2 \ /s$  at 20% and  $9.5 \times 10^{-5} \ cm^2 \ /s$  at 30%. D is linear between these points, given the moisture diffusion equation as

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial x} \left( D \, \frac{\partial W}{\partial x} \right)$$

where

W is the moisture content (kg/kg or %)  $D_v$  is the diffusion coefficient ( $cm^2/s$ )

(In the figure below, points 1 and 3 are external, while point 2 is internal).

