

The figure below shows the current (I) – voltage (V) curve of a solar module (black curve) and corresponding power curves (power as the function of voltage, gray curve), measured at the standard test conditions (STC, radiation intensity 1000 W/m², T = 25 °C, AM1.5G spectrum). The dimensions of the module are 600×1000 mm. Estimate the open circuit voltage $(V_{\rm OC})$, short circuit current $(I_{\rm SC})$, fill factor (FF), and energy conversion efficiency (η) of the module in the following two cases:

- a) Initial case, as in the Figure (3 p)
- b) Initial case, but with series resistance (R_S) of the module increased from its initial value by $1\Omega(3p)$

- Explain shortly following definitions (each 1 p) (a) Trombe-wall
- b) Thermosyphon
- c) Heat produced by a typical solar heating system in Southern Finland (kWh/m² per year)?
- d) Hottel-Whillier-Bliss (HWB) equation
- e) Fin efficiency of a solar collector
- f) Threshold intensity (kynnysintensiteetti)

0