
Examination 25 May 2012

Tfy-56.4323 Solar Energy Engineering (5cr, L)

Threshold for passing the exam is 12 p.

- 1. Using the azimuth (γ_s) and zenith angle (θ_z) of sun's position only, <u>derive</u> a relation for the cosine of the incidence angle of beam radiation $(\cos \theta)$ on the surface for the following case: The solar concentrator has a north-south axis (NS) and follows the sun's position in the eastwest plane, i.e. NS-axis and EW-tracking case. (6p)
- 2. What factors affect the efficiency of a silicon solar cell? (6p)
- 3. The figure below shows the current voltage (IV) curve of a solar module (black curve) and corresponding power curves (power as the function of voltage, gray curve), measured at the standard test conditions (STC, radiation intensity 1000 W/m², T=25°C). The dimensions of the module are 600 x 1000 mm. Estimate the open circuit voltage ($V_{\rm OC}$), short circuit current ($I_{\rm SC}$), fill factor (FF), and energy conversion efficiency (η) of the module in the following cases:
 - a) Initial case, as in the Figure (3 p);
 - b) The same initial case, but with an additional shunt resistance (R_{SH}) of 10 Ω connected between the positive and negative electrical terminals of the module (3 p)

- 4. A solar heating system consists of solar collectors that have the following parameter values: $F_R \tau \alpha = 0.8$ and $F_R U_L = 2W/m^2 K$.
 - a) Explain what kind of collector type is this? (1p)
 - b) Draw the efficiency curve of the solar collector e.g. using $(T_{in}-T_{amb})/I_{so}l$ as x-axis (2p)
 - c) How high collector temperature is reached on a clear and warm summer day when the circulation pump is turned off? (3p)
- 5. Explain shortly following definitions (each 1p)
 - a) Air-mass
 - b) Thermosyphon
 - c) Maximum concentration ratio
 - d) Electricity produced in a year by1-kWp grid-connected PV system Southern Finland
 - e) Organic solar cell
 - f) Pyrheliometer