Aalto University, School of Science Mat-1.3651 Matrix computations

Eirola/Murtola

Partial exam 2, April 29, 2013

No calculators or texts are allowed. Time for the exam is three hours.

1. Measured in $\| \|_2$ -norm, how far from

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -2 \\ 2 & 0 & 0 \end{bmatrix}$$

is the closest singular matrix? Hint: SVD.

2. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be nonzero and $\mathbf{x}_1 \in \mathbb{C}^n$ a unit vector such that

$$\|\boldsymbol{A}\boldsymbol{x}_1\| = \max_{\|\boldsymbol{x}\|_2=1} \|\boldsymbol{A}\,\boldsymbol{x}\|_2$$
,

and set $\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1/\|\mathbf{A}\mathbf{x}_1\|$. Let \mathbf{H}_1 , \mathbf{H}_2 be Householder transformations such that $\mathbf{H}_j \mathbf{x}_j$, j=1,2 are parallel to $\mathbf{e}_1=(1,0,\ldots,0)$. Show that, except for the $\mathbf{B}_{1,1}$ element, all other entries in the first row and the first column of $\mathbf{B} = \mathbf{H}_2 \mathbf{A} \mathbf{H}_1$ are zero. Hint: $\mathbf{H}_j = \mathbf{H}_j^* = \mathbf{H}_j^{-1}$.

3. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian and tridiagonal with all $\mathbf{A}_{j,j+1}$, $j = 1, \ldots, n-1$ elements nonzero. Show that the eigenvalues of A are distinct. (Hint: look at the rank of $\mathbf{A} - \lambda \mathbf{I}$.)

Give an example in the non-Hermitian case, where this is not true.

- 4. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^n$, and assume $\mathcal{K} = \operatorname{span} \left\{ \mathbf{A}^j \mathbf{b} \,\middle|\, j = 0, 1, \ldots \right\}$ has dimension $k \geq 1$. Show that the vectors $\mathbf{b}, \mathbf{A} \mathbf{b}, \ldots, \mathbf{A}^{k-1} \mathbf{b}$ are linearly independent. Let $\mathbf{P} = \mathbf{Q}_k \, \mathbf{Q}_k^*$ be the orthogonal projection onto \mathcal{K} and set $\mathbf{B} = \mathbf{A} \, \mathbf{P}$. Show that $\Lambda(\mathbf{B}) \subset \Lambda(\mathbf{A}) \cup \{0\}$.
- 5. Assume $A, B \in \mathbb{R}^{n \times n}$ are symmetric and positive definite. Show that the 2-norm condition number satisfies

$$\kappa_2(\boldsymbol{A} + \boldsymbol{B}) \le (\max \Lambda(\boldsymbol{A}) + \max \Lambda(\boldsymbol{B})) / (\min \Lambda(\boldsymbol{A}) + \min \Lambda(\boldsymbol{B}))$$
.

5. Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable and has $k \leq n$ distinct eigenvalues. Show that GMRes gives the solution in k steps.