Aalto University, School of Science

Mat-1.3651 Matrix computations

Eirola/Murtola

Partial exam 1, March 9, 2013

No calculators or texts are allowed. Time for the exam is three hours.

1. Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$ be given. We want to compute the product ABC. This can be done either as

$$a)$$
 $A(BC)$ or $b)$ $(AB)C$.

Compute the complexity (real (or floating point) number multiplications) for both cases. For which values of n, p, q the form a) is more favourable?

- 2. Let $A \in \mathbb{R}^{m \times n}$, m > n and A = QR its QR-decomposition with $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$ Show that R is invertible if and only if the columns of A are linearly independent.
- 3. Assume matrices A and B are similar. Show that they have the same number of linearly independent eigenvectors.
- 4. Show that $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if and only if $\|\mathbf{A}\|_F^2 = \sum_{j=1}^n |\lambda_j|^2$, where $\|\mathbf{A}\|_F^2 = \sum_{i,j=1}^n |a_{i,j}|^2$ and λ_j 's are the eigenvalues of \mathbf{A} . Hint: the Schur form.
- 5. Let $\boldsymbol{A} = \begin{bmatrix} 0 & \boldsymbol{I} \\ \boldsymbol{I} & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$, where $\boldsymbol{I} \in \mathbb{R}^{n \times n}$. a) Compute the eigenvalues of \boldsymbol{A} . For this consider the equation

$$oldsymbol{A} egin{bmatrix} oldsymbol{u} \ oldsymbol{v} \end{bmatrix} = \lambda egin{bmatrix} oldsymbol{u} \ oldsymbol{v} \end{bmatrix}$$

and you will find only two eigenvalues.

b) Assume $E \in \mathbb{R}^{n \times n}$ satisfies $||E||_2 \leq \frac{1}{2}$. Find the smallest possible set where the eigenvalues of

$$oldsymbol{B} = egin{bmatrix} oldsymbol{E} & oldsymbol{I} \ oldsymbol{I} & oldsymbol{E} \end{bmatrix}$$

are sure to be.