## Aalto University, School of Science

Mat-1.3651 Matrix computations

## Eirola/Murtola

## Partial exam 1, March 9, 2013

No calculators or texts are allowed. Time for the exam is three hours.

1. Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{B} \in \mathbb{R}^{n \times p}$, and $\boldsymbol{C} \in \mathbb{R}^{p \times q}$ be given. We want to compute the product $\boldsymbol{A B C}$. This can be done either as

$$
\text { a) } \quad \boldsymbol{A}(\boldsymbol{B C}) \quad \text { or } \quad \text { b) } \quad(\boldsymbol{A B}) \boldsymbol{C} .
$$

Compute the complextity (real (or floating point) number multiplications) for both cases. For which values of $n, p, q$ the form a) is more favourable?
2. Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}, m>n$ and $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ its QR -decomposition with $\boldsymbol{Q} \in$ $\mathbb{R}^{m \times n}$ and $\boldsymbol{R} \in \mathbb{R}^{n \times n}$ Show that $\boldsymbol{R}$ is invertible if and only if the columns of $\boldsymbol{A}$ are linearly independent.
3. Assume matrices $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar. Show that they have the same number of linearly independent eigenvectors.
4. Show that $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is normal if and only if $\|\boldsymbol{A}\|_{F}^{2}=\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2}$, where $\|\boldsymbol{A}\|_{F}^{2}=\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}$ and $\lambda_{j}$ 's are the eigenvalues of $\boldsymbol{A}$.
Hint: the Schur form.
5. Let $\boldsymbol{A}=\left[\begin{array}{ll}0 & \boldsymbol{I} \\ \boldsymbol{I} & 0\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$, where $\boldsymbol{I} \in \mathbb{R}^{n \times n}$.
a) Compute the eigenvalues of $\boldsymbol{A}$. For this consider the equation

$$
\boldsymbol{A}\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{v}
\end{array}\right]=\lambda\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{v}
\end{array}\right]
$$

and you will find only two eigenvalues.
b) Assume $\boldsymbol{E} \in \mathbb{R}^{n \times n}$ satisfies $\|\boldsymbol{E}\|_{2} \leq \frac{1}{2}$. Find the smallest possible set where the eigenvalues of

$$
\boldsymbol{B}=\left[\begin{array}{ll}
\boldsymbol{E} & \boldsymbol{I} \\
\boldsymbol{I} & \boldsymbol{E}
\end{array}\right]
$$

are sure to be.

