Mat-1.3650 Finite element method I

Easy exam, 6.5.2013

Remember to write your name and student number on every paper.

You will only need a pencil, and perhaps an eraser, to do this exam.

The time allowed is three hours.

You can answer in English or Finnish; also in Swedish if you must.

This is an exam: Provide step by step answers and justify your reasoning.

- 1. A) Let V be a Hilbert space with a norm $\|\cdot\|_V$. Suppose we have a bilinear form $a: V \times V \to \mathbb{R}$ and a linear functional $L: V \to \mathbb{R}$. Define the following
 - Coercive bilinear form
 - Bounded bilinear form
 - Bounded linear functional
 - B) Define $L^2(\Omega)$ and $H^1(\Omega)$ -norms.

Which is true: $L^2(\Omega) \subset H^1(\Omega)$ or $H^1(\Omega) \subset L^2(\Omega)$? Why so?

2. A) Derive the weak form of the problem

$$-\Delta u + u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

in which the domain $\Omega \subset \mathbb{R}^n$ is convex with a smooth boundary $\partial \Omega$ and $f \in L^2(\Omega)$. You can assume that you look for the solution in the space $H_0^1(\Omega)$.

- B) Show that the bilinear form is bounded and coercive in $H_0^1(\Omega)$.
- 3. Let V be a Hilbert space and suppose we have a bilinear form $a: V \times V \to \mathbb{R}$ and a linear functional $L: V \to \mathbb{R}$. Let $u \in V$ and $u_h \in V_h \subset V$ be such that

$$a(u,v) = L(v) \quad \forall v \in V \quad \text{and} \quad a(u_h,v_h) = L(v_h) \quad \forall v_h \in V_h.$$

For $v \in V$, let $||v||_E^2 := a(v, v)$ denote the energy norm of the problem. Assuming it holds

$$|a(w,v)| \le ||w||_E ||v||_E \quad \forall w, v \in V$$

show that

1

$$||u - u_h||_E \le \inf_{v_h \in V_h} ||u - v_h||_E.$$

Hint: Galerkin orthogonality.

4. Consider our model Poisson problem $-\Delta u = f$ with homogenous Dirichlet boundary conditions in a bounded domain Ω . Suppose we have the exact solution u and the finite dimensional solution $u_h \in V_h \subset H^1_0(\Omega)$. Suppose the following a priori estimate holds:

$$||u - u_h||_1 \le Ch||u||_2.$$

What does this estimate tell you of the convergence of the error? (What is h? What does C depend on? Etc...) Be verbal and show what you have learned.