**Tfy-0.3223 Statistical Physics** Spring 2013

## Midterm Exam 2 17.5.2013

- 1. (a) Explain why bosons can form the Bose-Einstein condensate but fermions can not.
  - (b) Explain the connection between the random walk and the diffusion equation.
  - (c) In the 2D Ising Model there is a finite critical temperature  $T_C \neq 0$  at which system undergoes the phase transition. Why there is no such phase transition in the 1D Ising Model?
- 2. Consider the statistics of a non-interacting gas of particles on energy states  $E_{\ell}$ . On any given state, there can be up to p particles, i.e. the allowed occupation numbers are  $n_{\ell} = 0, 1, \ldots, p$ . The total energy of the system is then  $E = \sum_{\ell} n_{\ell} E_{\ell}$ . (These hypothetical particles are called anyons.)
  - (a) Calculate the grand canonical partition function.
  - (b) Calculate the average occupation number  $\langle n_{\ell} \rangle$ .
  - (c) Consider the limits p = 1 and  $p \to \infty$ . What is  $\langle n_{\ell} \rangle$  in these limits, and what are the corresponding statistics?
- 3. Consider a system of two interacting spins  $s_{1,2} = \pm 1$ , subjected to an external magnetic field *B*. Its Hamiltonian is

$$\mathcal{H} = Js_1 s_2 - \mu_B B(s_1 + s_2), \tag{1}$$

where J and  $\mu_B$  are parameters.

- (a) Find the Helmholtz free energy and the average magnetic moment  $m = \mu_B \langle s_1 + s_2 \rangle$ , for a given temperature and magnetic field.
- (b) Find the linear magnetic susceptibility  $\xi = \frac{\partial m}{\partial B}\Big|_{B\to 0}$  as a function of temperature.
- 4. Consider a 1D random walker that moves one step to the right with probability  $p_1$ , two steps to the right with probability  $p_2$  and one step to the left with probability q on an infinite lattice with lattice spacing of L (see Fig. ??).
  - (a) What is the condition that  $q, p_1$  and  $p_2$  must satisfy? (1 p.)
  - (b) What is the condition that q,  $p_1$  and  $p_2$  must satisfy for there to be no particle drift (i.e.  $\langle \Delta x \rangle = 0$ ) after N steps  $(N \to \infty)$ ? (2 p.)



Figure 1: Random walk of question 4.

(c) Calculate the tracter diffusion coefficient when there is no drift. (3 p.)

Recall:  $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$