Aalto University, School of Science Department of Information and Computer Science

Tommi Junttila (tel. 050-4300861)

T-79.1001 Introduction to Theoretical Computer Science T (4 cr) Exam Wednesday May 22nd, 2013 at 9:00–12:00

Write on every answer sheet:

Name, degree programme, student number

The text: "T-79 1001 Introduction to Theoretical Computer Science T 8.3.2013"

- The total number of answer sheets submitted for grading

Use of calculators is not allowed in the exam.

Note: if you have not completed your computerized home assignments, your exam will not be graded.

- 1 Finite state automata ja regular expressions.
 - (a) Show that the language $\{w \in \{a,b\}^* \mid \text{the number of } b \text{s in } w \text{ is divisible by } 3\}$ is regular by describing it as a regular expression.
 - (b) Show that the language $\{w \in \{a,b,c\}^* \mid w \text{ contains the substring } bac \text{ or ends in the substring } bc\}$ is regular by describing it as a (possibly non-deterministic) finite state automaton. 5p.
 - (c) Design the deterministic finite state automaton with the minimal number of states that accepts the language described by the regular expression $bb(cab \cup ab)^*$ 5p.
- 2. Consider the language

$$L = \{a^n(ca)^m b^{n+1} \mid m \ge 0 \text{ and } n \ge 0\}$$

over the alphabet $\{a, b, c\}$

(a) Show that L is not regular.

7p.

(b) Design a context free grammar that produces L.

- 6p.
- (c) Give parse trees for the strings cacab and aacabbb in your grammar.
- 2p.

3. Design a Turing machine that decides the language

$$L = \{wcw \mid w \in \{a,b\}^*\}$$

over the alphabet $\{a,b,c\}$ If you wish, your machine may have multiple tapes. Present your machine as a state diagram and describe its method of operation verbally.

Give the computations of your machine with the inputs aca and bacab.

15p.

4. (a) Define the notions of a recursive ("decidable") and recursively enumerable ("semidecidable") language.
 Is the language L_{primeprod} = {x ∈ {0,1, ..,9}* | x is a product of two prime numbers} re-

Is the language $L_{\text{primeprod}} = \{x \in \{0, 1, ..., 9\}^* \mid x \text{ is a product of two prime numbers} \}$ recursive? Justify your answer. (E.g. 15 belongs to the language as $15 = 3 \times 5$ but 16 is not in the language.)

5p.

- (b) Prove the following claim either correct or incorrect: If L_1 is a context-free language and L_2 is a recursive language, then $L_1 \cap L_2$ is a context-free language. 5p.
- (c) Given a language L over an alphabet Σ , let $L^R = \{w^R \mid w \in L\}$ be the language obtained by reversing each string in L. Here w^R is the reverse of w (for example, $(gnat)^R = tang$). Prove the following claim either correct or incorrect: if L is a recursive language, then L^R is also a recursive language.

Total 60p.