- T-106.5600 CONCURRENT PROGRAMMNG EXAM 16.12.2013

PLEASE, BE CONCISE AND WRITE CLEARLY! The shorter you can be without loosing clarity the better scores you will get.

1. Concepts

Select three topics from the following list and write a short definition and description of it. Use not
more than one hundred words (articles and prepositions excluded) per topic for your answers:

aD Differences between processes and threads
\f) Amdahl’s law and scalability
c) Explicit and implicit concurrency
E)\ Task parallelism and data parallelism
(é}\ Deadlock, livelock and starvation

2. Mutual exclusion

Examine the following mutual exclusion algorithm for N threads and answer all three questions. Prove
your answer or provide an execution trace that shows that the property is false.

integer turn <- @
boolean busy <- false

loop forever - for each thread P;
do {

do {

turn <- i

} while (busy)

busy <- true
} while (turn != i)
critical section
8 busy <- false

NN R W

1) Does the algorithm satisfy mutual exclusion?
2) Is the algorithm free from starvation?
3) Is the protocol free from deadlocks?

3. Verification of Safety and Liveness

Give an axiomatic proof of the a) safety and b) liveness of the following algorithm for critical section:

Algorithm 3.15: Doran-Thomas algorithm
boolean wantp<false, wantq & false
integer turn€1 _
P q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: wantp€true g2: wantq€true
p3: if wantq q3: if wantp
p4: ifturn=2 q4: ifturn=1
p5: wantp €-false q5: wantq<false
p6: await turn=1 gé6: await turn=2
p7: wantp <true q7: wantq<-true
p8: await wantg=false q8: await wantp=false
psS: critical section qS: critical section
pl0: wantp € false ql0: wantq € false
pll: turn€2 qll: turn€1l

4. Java Monitor for Readers and Writers

public interface ReadWritelock {
void writerLock();
void writerRelease();
void readerLock();
void readerRelease();

}

You have been given the following Java interface:

a) Implement the interface using the Java synchronization primitives wait(), notify() and
notifyAll(). Multiple readers may run concurrently, but a writer must exclude all other
actions, including other writers. You may ignore exception handling. You can assume that
readers and writers adhere to the following access protocol:

rwlock.writerLock(); r‘wlock..r*eader‘!.ock()
//do writing //do reading
rwlock.writerRelease(); rwlock.readerRelease();

b) Modify your solution so that writers are given priority over readers.

Your solutions should take less than 30 lines of code and it should fit with explanations in a sheet of
paper.

5. A General Semaphore in a Tuple Space

Implement a general semaphore in Tuple Space using just one tuple.

