## T-61.5130 Machine Learning and Neural Networks Examination 20th December 2013/Karhunen

- 1. Answer briefly (using a few lines) to the following questions or items:
  - (a) For what purpose and where is moment term used?
  - (b) What is cross-validation?
  - (c) Which are the two main criteria for measuring non-Gaussianity?
  - (d) Explain briefly  $\epsilon$ -insensitive cost function.
  - (e) Which neural network method is based on competitive learning?
  - (f) Explain briefly what is NARX model.
- 2. In the steepest descent method the adjustment  $\Delta \mathbf{w}(n)$  applied to the parameter vector  $\mathbf{w}(n)$  is defined by  $\Delta \mathbf{w}(n) = -\eta \mathbf{g}(n)$ , where  $\eta$  is the learning-rate parameter and

 $\mathbf{g}(n) = \frac{\partial \mathcal{E}_{av}(\mathbf{w})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}(n)}$ 

is the local gradient vector of cost function  $\mathcal{E}_{av}(\mathbf{w})$  averaged over the learning samples. How could you determine the learning rate parameter  $\eta$  so that it minimizes the cost function  $\mathcal{E}_{av}(\mathbf{w})$  as much as possible?

3. Consider solving the XOR problem using an RBF network. In the XOR problem the desired output is 0 for the vectors  $(1,1)^T$  and  $(0,0)^T$  belonging to the first class. For the vectors  $(1,0)^T$  and  $(0,1)^T$  belonging to the second class the desired output is 1. Let us construct a classifier using the basic RBF network, where the radial basis functions are chosen to be multiquadratic type functions

$$\varphi(\parallel \mathbf{x} - \mathbf{x}_i \parallel) = [\parallel \mathbf{x} - \mathbf{x}_i \parallel^2 + 3]^{1/2}$$

where  $\mathbf{x}_i$  is the *i*:th training vector. Present how the solution is calculated, and form the equations needed for the solution. Note: you do not need to solve these equations numerically.

4. Explain what you know about Deep belief networks. You need not describe their learning algorithms in detail.