Aalto University School of Science

Nevanlinna

## Exam, 27.05.2013

- 1. Let  $\mathbb{A}_2$  be the set consisting of the real roots of nonzero polynomials with integer coefficients of degree at most 2 i.e.  $\alpha \in \mathbb{A}_2$  if  $\alpha \in \mathbb{R}$  and there exist  $a_0, a_1, a_2 \in \mathbb{Z}$ 
  - $p(\alpha) = a_2 \alpha^2 + a_1 \alpha + a_0 = 0.$

 $(a_i \neq 0 \text{ for some } i \in \{0, 1, 2\}) \text{ such that }$ 

(a) Show that 
$$A_2$$
 is countable.

Mat-1.2990 Foundations of Modern Analysis

- (b) Is the power set  $\mathcal{P}(\mathbb{A}_2)$  countable? Justify your answers.
- 2. Let (X, d) be a metric space and let  $K \subset X$  be compact.

  - (a) What is the definition of compactness of a set K? (b) Let  $A \subset X$  be a finite set. Prove using the definition of compactness, that
- $K \cup A$  is compact. 3. Let  $\Lambda \in \mathcal{D}'$  be a distribution and let  $(\Lambda_j)_{j=1}^{\infty}$  be a sequence of distributions  $(\Lambda_j \in \mathcal{D}')$ 
  - for every j).
  - (a) Give a definition for the distributional derivative  $D\Lambda$ .
- (b) Define convergence in the sense of distributions (denoted by  $\Lambda_j \stackrel{\mathcal{D}'}{\to} \Lambda$ ).

(b) Show that if f is continuous, then  $f \in M$ .

- (c) Prove that if  $\Lambda_j \xrightarrow{\mathcal{D}'} \Lambda$ , then  $D\Lambda_j \xrightarrow{\mathcal{D}'} D\Lambda$ .
- 4. Let  $(X, d, \mu)$  be a metric measure space, where  $\mu$  is a Borel measure. Consider functions  $f: X \to \mathbb{R}$ .
  - (a) Define when a function f is measurable (denoted by  $f \in M$ ).