Aalto University, Department of Mathematics and Systems Analysis.

Mat-1.3350, Partial Differential Equations L, fall 2013. First Midterm Exam, October 1st, 2013

TIRST WILDTERM EXAM, OCTOBER 181, 2013

1. Answer "yes" or "no", according to whether the following statements are correct, or false, respectively. In any case, briefly justify your answer.

Note that in (ii) and (iii) $\hat{f} = \hat{f}(i)$ if \mathbb{Z} denotes the Fourier coefficients of 2π -periodic.

Note that in (ii) and (iii), $\hat{f} = \hat{f}(j)$, $j \in \mathbb{Z}$, denotes the Fourier coefficients of 2π -periodic functions. In (iv) and (v), $\hat{f} = \hat{f}(\xi)$, $\xi \in \mathbb{R}$, denotes the Fourier transform of f on \mathbb{R} .

(i) Let f be an odd 2π -periodic function. Then the (real form of the) Fourier series of f has the form

$$f \sim \sum_{n=1}^{\infty} c_n \sin(nt)$$
, for some constants c_n , $n \in \mathbb{Z}$.

(ii) There exists a 2π -periodic function f satisfying

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx = 1 \quad and \quad \hat{f}(100) = 10.$$

- (iii) There exists a function $f \in L^1([-\pi, \pi))$ with Fourier coefficients $\hat{f}(j) = j$ for all $j \in \mathbb{Z}$.
- (iv) There exists a function $f \in L^1(\mathbb{R})$ such that $\hat{f}(\xi) = f(\xi)$ for all $\xi \in \mathbb{R}$. (v) There exists a function $f \in L^1(\mathbb{R})$ such that

 $\hat{f}(\xi) = \begin{cases} \frac{1}{|\xi|^2}, & \text{if } |\xi| \ge 1, \\ 0 & \text{if } |\xi| < 1. \end{cases}$

- (i) Find the Fourier coefficients of f, $\hat{f}(j)$, for every $j \in \mathbb{Z}$.
- (ii) Solve the steady state heat equation (that is, the Laplace equation) in the unit disc, with boundary data f:

$$\begin{cases} \Delta u = 0 & when \quad x \in \mathbb{R}^2, |x| < 1, \\ u(x) = f(x) & when \quad x \in \mathbb{R}^2, |x| = 1. \end{cases}$$

2. Let $f(x) = \sin x + \cos x + \sin 3x$, $-\pi \le x \le \pi$.

3. Let $f: \mathbb{R} \to \mathbb{C}$ be a C^2 -function with compact support (f is 0 outside an interval of the form [-R, R] for some R > 0). We denote by $\hat{f}(\xi)$, $\xi \in \mathbb{R}$, the Fourier transform of $f: \mathbb{R} \to \mathbb{C}$.

 $f(\xi) = \frac{1}{(2\pi i \xi)^2} \int_{\mathbb{R}} f''(x)e^{-2\pi i x \xi} dx.$

(ii) Show that $\hat{f} \in L^1(\mathbb{R})$, that is, show that $\int_{\mathbb{R}} |\hat{f}(\xi)| d\xi < +\infty$.