- 1. Buses arrive at a bus stop according to a Poisson process with an average interarrival time of 10 minutes. You arrive at the bus stop just after the departure of the previous bus.
 - (a) Let T denote the time until the arrival of the next bus. What is the distribution of the random variable T?
 - (b) Let X denote the number of buses that arrive during the next 5 minutes after your arrival. What is the distribution of the random variable X?
- 2. Consider the M/M/2/3 model with mean customer interarrival time of $1/\lambda$ time units and mean service time of $1/\mu$ time units. Let X(t) denote the number of customers in the system at time t.
 - (a) Draw the state transition diagram of Markov process X(t).
 - (b) Derive the equilibrium distribution of X(t).
 - (c) Assume that $\lambda = \mu$. What is the probability that an arriving customer is lost?
- 3. Consider a lossy queueing system with 2 parallel servers and 2 waiting places. The average interarrival time between two customers is 6 minutes, and the loss ratio is 10%. In addition, the average waiting time (before service) is 2 minutes, and the average service time is 8 minutes.
 - (a) What is the average number of waiting customers?
 - (b) What is the average number of customers in service?
- 4. A trunk network link can break down independently at either end point. The failure times at end point 1 are exponentially distributed with parameter λ_1 and repair times are also exponential with parameter μ_1 . Similarly parameters λ_2 and μ_2 for end point 2. Both end points can be down at the same time.
 - (a) Draw the reliability block diagram of the system and determine the structure function of the system.
 - (b) Make a Markov model of the system and calculate the average availability.
- 5. a) Assume the you can use a pseudo random number generator to easily generate samples of the random variable U that is uniformly distributed between (0,1), i.e., $U \sim \mathrm{U}(0,1)$. Apply the inverse transform method to generate samples of the random variable X obeying $\mathrm{Exp}(\lambda)$ distribution (exponential distribution with mean $1/\lambda$).
 - b) Again assume that you have a pseudo-random number generator to generate samples of $U \sim \mathrm{U}(0,1)$. Give a pseudo code description for simulating a Poisson arrival process with intensity λ to count the number of arrivals between the time [0,T].