Answer all 5 questions.

- 1. Answer based on very general scaling laws:
 - a) Why it is challenging to build nano/microrobots?
 - b) Why capacitive coupling may actually be quite an appropriate method in length scales below
 - c) What is meant by high surface area material? Give some rough numbers what it means.
- 2. Mechanical force is given by F= -k x. The force related to the electrostatic energy $E= \frac{1}{2} CU^2$, where C= ϵ A/(d₀-x) is given by F = $-\partial$ E/ ∂ x (assume one-dimensional case). U is voltage and d₀ is the equilibrium distance.
 - a) Show where the mechanical actuation, the real motion comes from in a capacitive coupled
 - b) Derive the pull-in point and the corresponding voltage (only correct answer without derivation gives 0 points)
- 3. Explain the concepts Johnson-Nyquist, 1/f noise and thermal noise
- 4. a) Explain the working principle of PCR chips
 - b) Explain a system and methods to sort various kinds of cells from a liquid channel using optics
- 5. Design a microsystem that can be used (choose only one, explain the method and give some estimated performance numbers)
 - a) to measure the speed of wind
 - b) to measure relative humidity
 - c) to measure angular velocity
 - d) as a reference oscillator at 900 MHz for mobile phones