S-96.3320 Radiowave Propagation

Exam 17-March-2014

Instructions

First answer the course first part Problems 1 and 2. (Problem 1 is voluntary: it can be used to compensate the summary essay written in the fall; the better of the two will be used for grading.) You may use the materials stated in Noppa, i.e., a hardcopy of Richards's book and a print of the first part lecture notes, and a calculator.

After finishing your answer to Problems 1 and 2, raise your hand to get the attention of the exam supervisor. Give your answers to Problems 1 and 2 and the printed materials to the supervisor, who will then hand you the second part Problems 3 and 4. You may still use a calculator but no other materials.

At the end of the exam, give your answers to Problems 3 and 4 to the exam supervisor, pick up your printed materials, sign the attendance list and leave the exam hall.

Open-book problems:

1. The textbook of this course (Radio Wave Propagation) defines a surface as smooth if its vertical height variation h obeys the criterion

$$h < \frac{\lambda}{8\cos\theta_i}$$

where θ_i is the angle of incidence of the incoming plane wave and λ is the wavelength. Show that this criterion follows from the condition stating that the phase change $\Delta \phi$ of the field due to height variation is always smaller than 90° compared to a reflection from an ideally flat surface.

2. The value of the spherically symmetric refraction index n(r) is $n(a) = n_0$ on the surface of the Earth. The refractive index diminishes linearly to value n = 1 which is obtained at the height h = 5 km. What is the minimum value for n_0 if it is required that a ray sent at an elevation angle $\gamma = 1.5^{\circ}$ from the Earth's surface is refracted back to the surface of the Earth.

[Closed-book problems]

- 3. We estimate energy reflected from a smooth and flat surface having a width x by illuminating the surface from a normal direction as illustrated in Fig. 1. We assume that the transmit and receive antennas are co-located at a location where the distance normal to the surface is d.
 - A) Define Fresnel zones using mathematical expressions. Provide physical meaning of the Fresnel zones. We use a symbol λ to denote wavelength of a sinusoidal radio signal.
 - B) We estimate the energy reflected from the surface using ray-optics approximation. Derive a maximum possible separation distance d_{max} between the surface and the antennas to obtain a valid estimate.
 - C) Give grounds why the estimation may be invalid when $d > d_{\text{max}}$.
 - D) For a radio frequency signal of 100 MHz and 1 GHz, estimate d_{max} for a surface with x = 2.0 m.

Figure 1: Geometrical setting to estimate energy reflected from a smooth and flat surface.

- 4. For the following statement, mention if you agree or disagree. Then provide detailed reasoning for the chosen side.
 - A) In mobile communications, macrocell is the most effective way to provide service to mobile subscribers.
 - B) When a mobile operates in a multipath fading channel with a small *K* factor, the mobile receives better quality of service than a mobile operating in a large *K* factor.