Phys-C0220 Thermodynamics and Statistical Physics Spring 2014

Exam 11.4.2014

- 1. Define or explain the following as accurately and concisely as you can:
 - (a) Maxwell's demon
 - (b) Carnot cycle
 - (c) entropy
 - (d) thermodynamic limit
 - (e) statistical ensembles
 - (f) Bose condensation
- 2. Laws of thermodynamics:
 - a) Formulate the laws of thermodynamics.
 - b) Use the first and the second law to show that when two isolated bodies at different temperatures are thermally connected, heat flows from the hotter to the colder.
 - c) Using the second and the third law, show that the heat capacity of any system is zero at T=0.
- 3. Show that for an ideal gas, $pV^{\gamma}=$ const. for an adiabatic process. What is the numerical value of γ ?
- 4. Use the canonical formalism to derive the heat capacity of a set of 3N quantum harmonic oscillators. Show that it reduces to the classical result $C_N = 3Nk_B$ in the limit $T \to \infty$. Follow these steps:
 - a) Hamiltonian of a single oscillator is given by $\hat{H}_i = \hbar \omega \left(\hat{n} + \frac{1}{2} \right)$. Calculate the canonical partition function. *Hint: make use of the geometric sum.*
 - b) Derive a general expression for the heat capacity from the definition of the partition function.
 - c) Calculate the heat capacity by plugging the result of part a) into the formula derived in part b).