box of size $A = L^2$ at temperature T. Recall that that the Hamiltonian $H_i = \hbar \omega_i$ for photons. Also $\mu = 0$, because the photon number is not conserved.

Hint: $\int_0^\infty \frac{x^2}{c^2-1} dx = \zeta(3)$ (Riemann zeta function).

5. Compute the pressure of a photon gas constrained in a two-dimensional

a) Calculate the grand canonical partition function Z_G . b) Recall that the grand potential $\Phi_G = -pV = k_BT \ln Z_G$. Calculate the pressure.