Aalto University

Department of Information and Computer Science

Shinnosuke Seki

T-79.5205 Combinatorics (5 cr)

Final exam, Thursday 11th December 2014, 9-12

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "T-79.5205 Combinatorics 11.12.2014"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

1. Ramsey Theory (Total 7p)

By $R_r(\underbrace{3,3,\ldots,3}_r)$, we denote the minimum number n such that, for any complete

graph K_n of n vertices and for any r-coloring on its edges, there is a color i such that K_n contains a triangle of color i.

- (a) Prove $R_2(3,3) = 6$. (2p)
- (b) Prove $R_r(3,3,\ldots,3) \le r(R_{r-1}(3,3,\ldots,3)-1)+2$ for any r. (2p)
- (c) By combining (a) and (b), give an upperbound on $R_3(3,3,3)$. (1p)
- (d) Using probabilistic methods, prove the lowerbound $R_3(3,3,3) \ge 5$. (2p)
- 2. Hall's condition (Total 8p)

Let $j_1, j_2, ..., j_n$ be jobs, and X be a finite set of processors for these jobs. For $k \in [n] = \{1, 2, ..., n\}$, by A_k we denote the set of processors in X that can handle the job j_k . A system of distinct representatives (SDR) is an assignment of distinct processors in X to the n jobs.

(a) Prove that the following Hall's condition is a necessary condition for the existence of SDR. (1p)

$$\forall J \subseteq [n], \left| \bigcup_{k \in J} A_k \right| \ge |J|. \tag{1}$$

- (b) We will prove the sufficiency of (1) for the existence of SDR using Dilworth's theorem, which says: A finite poset whose largest antichain is of size r can be partitioned into r chains. Assume (1) holds.
 - i. Define a poset $(X \cup [n], \leq)$ with x < k iff $x \in A_k$ (a processor x is "smaller than" the job j_k iff x can handle j_k). Show that the size of any antichain S of this poset is at most |X|. (1p)
 - ii. Using the Dilworth's theorem, construct an SDR. (2p)
- (c) Show that, for $d \ge 1$, every bipartite d-regular graph has a perfect matching. (2p)

- (d) Take a standard deck of 52 cards. Prove that no matter how you deal them into 13 piles of 4 cards each, you can select exactly 1 card from each pile such that the 13 selected cards contain exactly one card of each rank (ace, 2, 3, ..., queen, king). (2p)
- 3. Group and symmetry (Total 9p) Let (G,*) be a group. For a nonempty subset $H \subseteq G$, the pair (H,*) is a *subgroup* of G, written as $H \leq G$, if
 - $h_1 * h_2 \in H$ for all $h_1, h_2 \in H$, and
 - $h^{-1} \in H$ for all $h \in H$.
 - (a) Give an example of subgroup and prove that it is a subgroup. (1p)
 - (b) Let G be a finite group. For each $H, K \leq G$ and $g \in G$, define the double coset as

$$HgK = \{hgk \mid h \in H, k \in K\}.$$

Show that the double cosets $\{HgK \mid g \in G\}$ partition G. (2p)

- (c) Let D be a finite set and let G be a finite group of functions from D to D (i.e., G acts on D). For $x \in D$,
 - the *orbit* of x on D is the set $Gx = \{gx \mid g \in G\}$.
 - the *stabilizer* of *x* in *G* is the set $G_x = \{g \in G \mid gx = x\}$.

For $x \in D$, $|G| = |G_x||Gx|$ (the orbit-stabilizer theorem).

By $G \setminus D$, we denote the set of orbits of G on D. The orbit counting lemma says

$$|G \setminus D| = \frac{1}{|G|} \sum_{g \in G} |F(g)|,$$

where $F(g) = \{x \in D \mid gx = x\}.$

Using the orbit-stabilizer theorem, prove the orbit counting lemma. (2p)

(d) There are 6 chairs around a table like $\stackrel{\textcircled{3}}{\circ}\stackrel{\textcircled{2}}{\circ}$. Let us count ways for people to take a seat. Note that if one seating is just a rotation of another, then they

are not distinguished from each other. For example, oo and oo are the same.

- i. Show that the rotations, together with composition, form a group. (1p)
- ii. If a seating is not changed by a rotation, then it is fixed; for instance,
 - o is fixed by the rotations by 0, 120, or 240 degree. For each of these rotations, determine the number of seatings which are fixed by the rotation. (1p)
- iii. Achieve our goal, that is, count the seatings. (2p)