
T-79.4302 Parallel and Distributed Systems

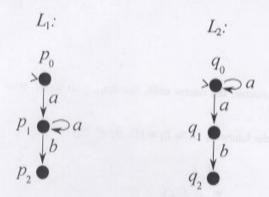
Examination 17 December 2014

Write down on every answer sheet: the name of the course, the course code, the date, your name, your student id, and your signature.

Assignment 1 Consider the parallel composition of the following LTSs $L_i = (\Sigma_i, S_i, S_i^0, \Delta_i)$

- List all pairs of independent actions of the parallel composition $L_1 \parallel L_2 \parallel L_3$. Write the actions as tuples (t_1, t_2, t_3) , where each $t_i \in \Delta \cup \{-\}$.
- Construct the reachable part of the asynchronous product LTS $L = L_1 \parallel L_2 \parallel L_3$. (2p)
- (c) List all reachable states of L that are deadlocks.
- (d) List all reachable states of L in which a livelock exists. (2p)
- (e) List all reachable states of L in which a conflict occurs. (2p)
- (f) For each reachable state s of L with no conflict, justify why there is no conflict in s. (2p)

Assignment 2 Consider the Kripke structure $M = (S, s^0, R, L)$ with $S = \{s_0, s_1, s_2, s_3, s_4\}$, $s^0 = s_0$, $R = \{(s_0, s_1), (s_1, s_2), (s_2, s_3), (s_3, s_4), (s_4, s_1), (s_4, s_2)\}$, and the function L defined by $L(s_0) = \emptyset$, $L(s_1) = L(s_4) = \{power\}$, $L(s_2) = L(s_3) = \{ready, power\}$. For each of the LTL formulas below, check whether the formula holds in M or not. If the formula holds, give a brief explanation (max 5 lines of text) why the formula holds. If the formula does not hold, give a counterexample execution of M and explain why it violates the formula.


(3p)
(a)
$$G(ready \Rightarrow power)$$

(d)
$$G(ready \Rightarrow X X X X ready)$$
 (3p)

(e) Identify which of these are safety formulas and which are liveness formulas. Justify your answer. (3p)

Assignment 3 Consider the following LTSs over $\Sigma = \{a, b\}$

- (a) Construct a deterministic finite state automaton A' that recognizes the language $\Sigma^* \backslash traces(L_2)$. (2p)
- (b) See A' as an LTS L' and compute the asynchronous product LTS P = L₁ || L'. Explain how P can be used to argue that L₁ ≤_{tr} L₂.
 (c) Description
- (c) Does L₁ ≤_{sim} L₂ hold? Justify your answer.
 (d) Does L₁ ≤_{sim} L₂ hold? Justify your answer.
- (d) Does L₂ ≤_{sim} L₁ hold? Justify your answer.
 (2p)
- (e) From the theory of LTSs, define the bisimulation relation. (2p)
- (f) Does $L_1 \sim L_2$ hold? Justify your answer, (2p)

Assignment 4 Consider two philosophers who sit around a table. They spend their time in thinking, eating and sleeping. In order to eat, a philosopher needs a fork and a knife. However, there is only one fork and one knife on the table, so the philosophers cannot eat at the same time.

- (a) Model the behavior of the philosophers, the knife and the fork as LTSs Phil₁, Phil₂, Knife, and Fork, respectively, (8p)
- (b) such that the parallel composition Phil₁ || Phil₂ || Knife || Fork is deadlock-free and in every infinite trace, both philosophers eat infinitely often. (4p)

Explain the meaning of the states and actions of the LTSs or give self-explanatory names to the states and actions.