





T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMIN ATION

28 October 2011.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

This examination has five problems in two pages. Each problem is worth 6
points. Please write clearly and leave a wide left or right margin. You can have
a calculator, with memory erased. No other extra material is allowed.

You can keep this paper.

L

Write about the terms below in the context of the course, e.g. what is
in common and what are the differences. Use full sentences and give
examples.

(a) generative learning—discriminative learning (2 points)

(b) parametric methods-nonparametric methods (2 points)

(¢) classification—clustering (2 points)

- Consider a Bayesian network that has three binary variables M (trip to

Mexico), § (swine flu), and F (fever). The joint distribution is P(M, S, F) =
P(M)P(S | M)P(F | §) and the parameters are: P(M = 1) = 0.05,
P(§=1|M=0)=001,P(S=1|M=1)=005PF=1|5=0)=
0.01, and P(F=1]8§=1) = 0.9.

(a) Draw the graphical representation of the Bayesian network. (3 points)

(b) Compute P(M =1 | F = 1), that is, the probability that one has
been to Mexico if we know that she have fever. (3 points)

. Consider a parametric regression problem

(a) Write a pseudocode function to choose a regression model among
My, Mz, ..., Mg and its parameters § given a data set of 1000 sam-
ples {xf,r'}199  You should implement 10-fold cross validation for
model selection in your function. You can use abstract auxiliary func-
tions such as one for estimating parameters, but you should describe
each with one sentence and carefully list each function’s inputs and
outputs. (5 points)

(b) Mention one advantage and one disadvantage of 10-fold cross valida-
tion when compared to basic validation. (1 point)

. Assume that your data X is N d-dimensional real vectors, that is, X =

{x‘}L,, x* € R Consider the problem of reducing the dimensionality
of your data to k dimensions, where k < d, using principal component
analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa-
tion of the data in k& dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.) (4
points)



(b) What is the objective of PCA? (1 point)

(c) What is the relationship between the objective and the eigenvalues?
(1 point)

. Do three iterations of the Lloyd's algorithm for K-means clustering on the
2-dimensional data below. Use K = 2 clusters and the initial prototype
vectors (=mean vectors) my = (0.0,2.0) and my = (2.0,0.0). Write down
caleulation procedure and the cluster memberships as well as mean vectors
after each iteration. Draw the data points, cluster means and cluster
boundary after each iteration. (6 points)




T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

14 December 2010.

To pass the course you must also pass the prerequisite test and the term project.
Results of this examination are valid for one year after the examination date.

This examination has five problems each worth 6 points, and two pages. You
can answer in Finnish, Swedish, or English. Please write clearly and leave a
wide left or right margin. You can have a calculator, with memory erased. No
other extra material is allowed.

The results will be announced in Noppa on 14 January, at latest.

You can keep this paper.

1. Write about the terms below in the context of the course, e.g. what is
in common and what are the differences. Use full sentences and give
examples.

(a) hypothesis space—version space (2 points)
(b) generative learning—discriminative learning (2 points)

(¢) parametric methods-nonparametric methods (2 points)

2. Consider a classification of real-valued numbers x € R into two classes
C € {1, 2} using a model with p(z | C) = N(C,1) and P(C = 1) = 2/3.
The utility of a correct classification is zero, classifying a sample with class
1 into class 2 has utility -2, and class 2 into class 1 has utility -4. There is
also a “don’t know" option whose utility is -1 regardless of the true class.
What is the optimal decision for each z7 (Hint: If you are not sure about
your answer, it is a good idea to draw a figure.)

3. Consider the feature selection in a nonparametric classification problem.

(a) What is feature selection and why is it useful (at least two reasons)?
(1.5 points)

(b) Explain, also using pseudocode, how you would implement forward
and backward selection of features in a real world application. (3
points)

(c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(1.5 points)



Figure 1: Toy data set for problem 5.

4. Consider the problem of clustering IV real valued data vectors into k clus-
ters using the Lloyd’s algorithm, also known as the k-means algorithm.

(a) Write down the Lloyd’s algorithm in pseudocode. Pay attention to
clearly marking the inputs and outputs of each function. Include an
initialization in your algorithm. (4.5 points)

(b) What can you say about the convergence and solutions found by the
Lloyd’s algorithm? How could you take this into account in practical
data analysis? (1.5 point)

5. Regression trees.
(a) Describe the ID3 algorithm for regression trees by using pseudocode.
What is the cost function that the algorithm is optimizing? (3 points)

(b) Explain pruning in this context. Why and when is the pruning nec-
essary? (1.5 point)

(c) Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (regression task of predicting y given ). (1.5 points)



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
15 December 2009,

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

This examination has five problems and two pages. You can answer in Finnish,
Swedish or English. Please write clearly and leave a wide left or right margin.
You can have a calculator, with memory erased. No other extra material is
allowed.

An important grading criterion is understandability: in addition to heing com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course,

The results will be announced in Noppa on 15 January 2000, at latest.

You can keep this paper.

1. Write a couple of sentences about the terms below in the context of the

course, e.. what is in common and what are the differences.

(a) supervised learning-unsupervised learning

(b} feature extraction—feature selection

(c) generative learning-discriminative learning

(d) Akaike Information Criterion (AIC)-Bayesian Information Criterion

(BIC)
(e) classification—clustering
(f} validation data-testing data

2. (a) Consider a regression problem, where you are trying to predict r
based on x using some regressor g(z). The expected generalization
error at z is Bl(r — g(x))* | z] over the joint distribution of unseen r
and z. The error can be divided into different parts. Name and give
an example of three conceptually different sources of error. What
can you do to minimize each type of error?

{(b) Consider the Bayesian network and the data set in Figure 1. Write
the joint distribution F(A, B) and compute the maximum likelihoad
estimates of the model parameters.

A Bt

1

Figure 1: The data set and the Bayesian network structure for Problem 2 (b).
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3. Bayesian probability theory. Consider the problem of finding the probabil-
ity that a coin flip gives “heads” given a set of observed coin flips (assume
that the probability of *heads” or “tails” can also be something else than
-% of & fair coin).

(a) Demonstrate two different prior probability densities for this prob-
lem, compare them and explain their interpretation.

(b} Describe (using relevant concepts) how you could find the probability
of getting “heads” after observing NV coin flips for various choices of
prior probability density. Write down the essential formulac.

(¢) Define the maximum likelihood (ML) estimate, the maximum a pos-
teriori (MAP) estimate and the Bayes estimate and compare their
properties.

4. Bayesian multivariate classification. Consider the problem of classifying
real vectors into two classes using a Bayesian classifier with class densities
taken to be multivariate normal distributions, given the training data
A ={(rt, )}, where vt € {0,1} and z* € R?.

(a) Write down the likelihood function.
{b) How can you tune the complexity of your model?

(¢) What is Naive Bayes assumption? Derive the discriminant function
for Naive Bayes classifier.

5. Principal component analysis, Assume that your data X is NV d-dimensional
real vectors, that is, & = {x'}]' |, x* € R, Consider the problem of re-
ducing the dimensionality of your data to k dimensions, where k < d,
using prineipal component analysis (PCA).

(&) Write down in pseudocode how you could find the PCA representa-
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you reconstruct the data vectors from the principal compo-
nents? Give an equation.

{c¢) How can you choose k7 List some methods.




T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
30 October 2009.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

This examination has five problems and two pages. You can answer in Finnish,
Swedish or English. Please write clearly and leave a wide left or right margin.
You can have a calculator, with memory erased. No other extra material is
allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course.

The results will be announced in Noppa on 30 November 2009, at latest.

Please fill the course feedback form (open until 6 November 2009) at
http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute-en.html.

You can keep this paper.

1. Write a couple of sentences about the terms below in the context of the
course, e.g. what is in common and what are the differences.
e hypothesis space—version space
o overfitting—underfitting
e probability—probability density
o feature selection—feature extraction
e generative learning—discriminative learning
e parametric methods—nonparametric methods
2. Consider the problem of linear regression using least squares estimates,

given a data set of X = {(r?,z%)}}L,, where 7t € R is the output (variate)
to be predicted and z* € R is the input (covariate).

e Write the model equation r* = g(z? | ) = ... and the error function
E(6 | X) to be minimized. :
e Give the solution of the parameters @ either as mathematical equa-

tions or as pseudocode. (If you have memorized the solution, explain
with a few words how you could have derived it.)

e Is it possible solve polynomial regression with linear algebra? Why?




3. Consider a Bayesian network that has three binary variables M (trip to
Mexico), S (swine flu), and F' (fever). The joint distribution is P(M, S, F) =
P(M)P(S | M)P(F | M) and the parameters are: P(M = 1) = 0.05,
P(S=1|M=0)=0.01,P(S=1|M=1)=005PF=1|5S=0)=
0.01, and P(F =1|8=1)=0.9.

e Draw the graphical representation of the Bayesian network.
e Compute P(M =1 | F = 1), that is, the probability that one has

been to Mexico if we know that she have fever.

4. Consider principal component analysis (PCA) for the 2-dimensional data
below.

e Find the direction of maximal variance (or the first eigenvector).
Describe the steps of your solution.

e Compute the proportion of variance explained by the first principal
component.

Hint: Finding the eigenvectors and eigenvalues of a diagonal matrix is
easy, but if you cannot find them, you can solve the rest of the problem
in pseudocode style.

5. Clustering.

e Run E, M, and E steps of the Lloyd’s algorithm for k-means clus-
tering on the 1-dimensional data below. Use k = 2 clusters and the
initial prototype vectors (=reference vectors) m; = 0.0 and mg = 1.0.
Explain the steps.

e Fit a mixture of Gaussians by taking one M-step, using the cluster
assignments from your k-means clustering solution. Remember to
estimate the parameters describing both P(G*) and p(z* | G*), where
G? are the cluster assignments. Hint: You can think of the cluster
assignments G as classes, so that the problem becomes equivalent
to estimating the parameters of a parametric classifier.

Zl?t

0.0
1.0
3.0
4.0
5.0
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
2 September 2009 at 9-12.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date

To get full points you must choose and complete five of the six problems,
Only the first five answers read by the examiner will be graded,

This examination has six problems (of which you must choose five) and two
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No ether extra material is allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course,

The results will be annpunced in Noppa on 2 October 2008, at latest.

You can keep this paper.

1. Model selection. Assume that vou have at your disposal a training data
set X = {(r',x})}{,, where r* € R is a real number and x' € RY is a
covariate vector of ¢ real variables. Consider the problem of constructing
a regressor gix) to approximate » for data vectors x that do not appear
in the training data.

(a) Explain concepts “inductive bias", “underfitting”, “overfitting”, “hy-
poathesis space” and “generalization” and their relation in the frame-
work of this problem.

{b) Give examples of realistic hypothesis spaces for this problem.

(&) How could you estimate the prediction error for yet unseen data?

(d) Generally in supervised learning: explain how the prediction error
on training data and yet unseen data s related?

2. Bayesian probability theory. Consider the problem of finding the probabil-
ity that a coin flip gives “heads” given a set of observed coin flips (assume
that the probabilily of *heads” or "tails” can also be something else than
1 of a fair coin).

(a) Demonstrate at least two prior probability densities for this problem,
compare them and explain their interpretation,

{b) Describe {using relevant concepts} how you could find the probability
of getting “heads” after observing /¥ coin flips for various choices of
prior probahility density, Write down the essential formulae,

(¢} Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates and compare their properties.

3. Bias and variance of an estimator.




(a) Define bias and variance of an estimator.
() What is unbiased estimator?
(¢) Compute the bias of an estimator of variance, given by s = 2:11 (=t — m.]i',"N,
where m = Z’::'L:i ot /N, where the data is given by N real numbers
gh te{l,.. s NE
4, Principal component analysis. Assume that vour data X' is NV d-dimensional
real vectors, that is, X = {x'}}L;, x* € RY. Consider the problem of re-
ducing the dimensionality of your data to & dimensions, where £ < d,
using principal component analysis (POA).

{a) Write down in pseudocods how you could find the PCA representa-
tion of the data in & dimensions. (Hint: it is probably easiest to use
matrix representation here, You ean assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b} How can you interpret the PCA dimension reduction geometrically?

(¢} How can you choose k? List some methods.
5, Feature selection. Consider the feature selection in remression problems.

{a) What is feature selection and why it is needed?

(b) Assume that you have a regression problem (for example, such as
in Problem 1). Explain, also using pseudocode, how you would im-
plement forward and backward selection of features in a real world
application.

{c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?

6. Classification trees.

{a) What is classification tree? Define it

(b) Describe the ID3 algorithm. What else do you need to take into
account when constructing a classification tree using a real world
data?

(¢} Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (binary elassification task in R2).

Fizure 1: Toy data set for problem 6.




T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
C, 31 October 2008 at 13-16.

You must have passed the term project 2007 or part 1 of the term project 2008
to participate to this examination.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

To get full points you must choose and complete five of the six problems.
Only the first five answers read by the examiner will be graded.

This examination has six problems (of which you must choose five) and three
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No other extra material is allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course.

The results will be announced in Noppa on 1 December 2008, at latest. No
other announcements will be sent.

Please fill the course feedback form (open until 9 November 2008) at http://
tieto.tkk.fi/Opinnot/kurssipalaute.html (in Finnish) or at http://wuw.
tkk.fi/Units/CSE/Studies/feedback.html (in English).

You can keep this paper.

1. Model selection. Assume that you have at your dispesal a training data
set X = {(rt,x*)}}L,, where vt € R is a real number and x* € R% is a
covariate vector of d real variables. Consider the problem of constructing
a regressor g(x) to approximate r for data vectors x that do not appear
in the training data.

(a) Explain concepts “inductive bias”, “underfitting”, “overfitting”, “hy-
pothesis space” and “generalization” and their relation in the frame-
work of this problem.

(b) Give examples of realistic hypothesis spaces for this problem.
(¢} How could you estimate the prediction error for yet unseen data?

(d) Generally in supervised learning: explain how the prediction error
on training data and yet unseen data is related?

2. Bayesian networks.

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(z4 | 1,22, x3), given the net-
work in Figure 1. You can assume that 8, xy, x2, x5 and z4 are
discrete random variables.



(o)
OROCRONO

Figure 1: Bayesian network for problem 2.

(c) If =5, © € {1,...,4}, are observations and @ are parameters of a
probabilistic model that has been assumed to have generated the
observations then what is P(8 | 21, 22, 23, 24) commonly called?

3. Bayesian probability theory. Consider the problem of finding mean of N
real numbers, X = {z*}{¥, where 2! € R.

(a) Define a feasible probabilistic model for this problem that has a mean
as a sole parameter,

(b) Define a feasible prior probability density for your problem and use
it to derive an expression for posterior probability density.

{c¢) Use your results to derive maximum likelihcod (ML) and maximum
a posteriori (MAP) estimates for the mean.

4. Bayesian multivariate classification. Consider the problem of classifying
real vectors into two classes using Bayesian classifiers with class densities
taken to be multivariate normal distributions, given the training data
X = {(r*,z*)}{L,, where r* € {0,1} and z* € R%.

(a) Write down the likelihood function.
(b) How can you tune the complexity of your model?
(c) What is Naive Bayes assumption? Derive the discriminant function

for Naive Bayes classifier.

5. Principal component analysis. Assume that your data X' is N d-dimensional
real vectors, that is, X = {x'}},, x* € RY. Consider the problem of re-
ducing the dimensionality of your data to k& dimensions, where k& < d,
using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa-
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

{b) How can you interpret the PCA dimension reduction geometrically?
(c) How can you choose k7 List some methods.
6. Decision trees.

(a) What is a decision tree? Define it.



Figure 2: Toy data set for problem 6.

(b) Describe the ID3 algorithm by using pseudocode. Explain pruning
in this context. Why and when is the pruning necessary?

{c) Sketch the running of the ID3 algorithm with a toy data set of Figure

2 (regression task of predicting y given x). What is the cost function
that the algorithm is optimizing?



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
C, 31 October 2008 at 13-16.

You must have passed the term project 2007 or part 1 of the term project 2008
to participate to this examination.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

To get full points you must choose and complete five of the six problems.
Only the first five answers read by the examiner will be graded.

This examination has six problems (of which you must choose five) and three
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No other extra material is allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course.

The results will be announced in Noppa on 1 December 2008, at latest. No
other announcements will be sent.

Please fill the course feedback form (open until 9 November 2008) at http://
tieto.tkk.fi/Opinnot/kurssipalaute.html (in Finnish) or at http://www.
tkk.fi/Units/CSE/Studies/feedback.html (in English).

You can keep this paper.

1. Model selection. Assume that you have at your disposal a training data
set X = {(rt,x*)}}¥,, where r* € R is a real number and x* € R? is a
covariate vector of d real variables. Consider the problem of constructing
a regressor g(x) to approximate r for data vectors x that do not appear
in the training data.

(a) Explain concepts “inductive bias”, “underfitting”, “overfitting”, “hy-
pothesis space” and “generalization” and their relation in the frame-
work of this problem.

(b) Give examples of realistic hypothesis spaces for this problem.
(c) How could you estimate the prediction error for yet unseen data?

(d) Generally in supervised learning: explain how the prediction error
on training data and yet unseen data is related?

2. Bayesian networks.

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(z4 | z1,T2,T3), given the net-
work in Figure 1. You can assume that 6, @1, x2, @3 and z4 are
discrete random variables.



(o
ONOCNORO,

Figure 1: Bayesian network for problem 2.

(¢) If ;, ©+ € {1,...,4}, are observations and @ are parameters of a
probabilistic model that has been assumed to have generated the
observations then what is P(6 | z1, z2, 3, z4) commonly called?

3. Bayesian probability theory. Consider the problem of finding mean of N
real numbers, X = {z!}{, where 2t € R.

(a) Define a feasible probabilistic model for this problem that has a mean
as a sole parameter.

(b) Define a feasible prior probability density for your problem and use
it to derive an expression for posterior probability density.

(c) Use your results to derive maximum likelihood (ML) and maximum
a posteriori (MAP) estimates for the mean.

4. Bayesian multivariate classification. Consider the problem of classifying
real vectors into two classes using Bayesian classifiers with class densities
taken to be multivariate normal distributions, given the training data
X = {(r*,2*)}},, where r* € {0,1} and z* € R

(a) Write down the likelihood function.
(b) How can you tune the complexity of your model?
(c) What is Naive Bayes assumption? Derive the discriminant function

for Naive Bayes classifier.

5. Principal component analysis. Assume that your data X is NV d-dimensional
real vectors, that is, X = {x‘}{,, x* € R?. Consider the problem of re-
ducing the dimensionality of your data to k dimensions, where k < d,
using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa-
tion of the data in k& dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k? List some methods.

6. Decision trees.

(a) What is a decision tree? Define it.



Figure 2: Toy data set for problem 6.

(b) Describe the ID3 algorithm by using pseudocode. Explain pruning
in this context. Why and when is the pruning necessary?

(c) Sketch the running of the ID3 algorithm with a toy data set of Figure
2 (regression task of predicting y given z). What is the cost function
that the algorithm is optimizing?






T-H1.3060 MACHINE LEARNING: BASIC PRINCIPLES
EXAMINATION 24 October 2014

T s bhie conese yonn mivst also pagss the term project. Results of this examination ave valid for one year
affer the sgamination date.

This examination has five problems each worth 10 peints, and three pages. You toust answer in English,
Please write elearly and leave & wide left or right margin, You can have a calonlator; with memory erased,
Mo other extra material is allowed.

The resilla will he annownced In Noppa. You can keep this paper,
Problem 1 Multipleschoice quostions (10 polnts total),

The followtng five questlons each have different proposed answers, jn cach gquestion only one answer 16
cortect. For each question, give both vour answer (one of ABC, ) and your confidence (“High” or
“Tow"). For expmple, “Ay Low" Is o proper wiy to answer a question, Bach question i graded as follows:

+2 i the angwer is correct and confidence is High
1 AT the-answer ts corvect and confldence ia Low
0 iF the answer bs missing

~1 f the answer 8 weong and eonfidence 1y Low
—2 il the answer I8 wrong and confidence is High.

" & & & @

Tho tatal seore for the multiple-cholee questions s hetween () and 10 (you cannol get s negative total

HEOTE ),

1) Assume the covariones mutels of your dataset & 15 3 and while deing Principal Component Analysis,

you found ¥ = CDGY, Hera D) s (he fellowing disgonal matrix;

e
G
0 o 14 0
LI | SO T

Then the proportion of varianee (POV ) explained by the first 2 principal components would be (acourate
until 2 dacimol places): S

A} B _J_:i—f""‘,q ad

) G '}"‘; e &, 1-
@) & B 34 'fﬁ;}
D) 1 Z s o
F} None of the above snswers 18 correct, i}'h 0

b
—

For a dataset distributed as idd A (pa), after computing the posterlor distrilution using a normal
prior for g you found the posterior distribution of ¢ to be A(5.24,4.62). Then the MAP-estimate and
Bayeseatimate of jowould be;

&) MAP-estimate = &, Bayes-estimate = 4,

B) MAP-estimate = 2.62, Bayes-estimote = 2.02;

O) MAP-estimate = 5,24, Bayes-eatimate = 5.24;

D) MAP-estimate = 5,24, Bayos-ostimate = 2.62;

E) None of the above answers is corteet,

4) EMenlgorithim is o type of fuzey clustering as;

A) The elusters wo get are fuzzy-sots)
B) Bach obsorvations see assigned to only one of the Kechisters; P



) For each obseivation there are different probabilities of it being sssigned to K different elusters;
1) The algovithm uses fuzzy-methods;

Ej MNone of the above angwers is coreect.,

—

Alatke Information Criterion (ALC) and Bayesian Information Criterion (B1C) can be written in o
general form s £y (8 | X)rvegularizer term. The regnlarizer tevm of BIC can be exprosied as:

A) AN x(regularizer term of ALC);
B) glogN x{regularizer term of AIC);
() 4 = (regulavizer term of AIC),;

) ﬁ'rNH(r&gulawim:' term of AICY,

6) In a clasgification problem, you have two elasses 0 and 1. You observed s new daty point Pro, Whose
likelihood of belonging to Class 0 aud Class 1 are eorvespondingly 32 and 41, Your prior belisfs
(probabilities) for the Clags 0 and Class 1 are correspondingly 0.6 and 0.4, "Then, following Bayesian

docision theoty, ., belongs Lo

A} Not enough information given to use Bayesian Declalon Theory;
B) Class 0;

) Class 1;

13} It can belong to both Clags (0 and | with-equal probability,

2
lean 2: Explanations of concepts (10 paints total},
Explain the termy below in the context of the couvse, 1 twa termy are given, explain them so that it
becomes clear what they have in common and what are the differences. Tae full gentences,
w1, Burward Senrcli, in contest of feature selection (2 poinks)
\_E-L' naive eatimntor—kernel estimator, in context of density estimation (2 points)
o regresalon—clasdification (2 points)
_dBing!Varianee Dilemma (2 points)

B, _pedametric methods — nonparametric methods (2 pointa).

Problem 3 Bayesian Decigion Theory and Parametrie Methods (10 points total ),

n-A gﬂmpuny hias to decide whether to aceept or reject a lot of incoming parts, (Label these actions m

" and ay respectively.) The lots are of three types: & (very good), 8 (aceeptable), and fy (bad). The
logs L(# a;) ineurred in making the decision is given in the following table. The prior belief is that
m{fh) = w(fa) w w(ds) w d,

o What s the definition of expected utility < explabin with equations? (1 points)
& What Is the expected utility of action oy for the company? {2 points)
o Find the optimal decision for the company, (2 peints)



-,M"Hmaﬂ-*phnm! producing company periodically samples smart-phones eoming off & production line,
in order Lo make sire the production proeess is running simoothly, They choose a sample of size B
and observe the number of defectives (X). They assume number of defectives (X)) 15 distributed as
Binamial(h,#), Past records show that the proportion of defeciives # varies nceording to a Heta(1, )
distribution,

iy

[Hints: (a) Binomial(aln, 6) = grthan b (1-0)); () Beta(Olo, ) = St 2 () B, ) =
Ji alo=1(1 - g)(a=1))

o If they have observed X = 2 defective smart-phones in one inspection run, explain how we
derive the posterior disteibution of 07 (3 points) [Hint: The posterior distribution weald e
Beta(o+ 2,8+ (5 - 2)))

o What would bo the Bayes estimate of 8 using the posterior distribution deryied in last gtep? [Hine:
You know the mean of Beta (o, #) distribution i« o | (2 points),

Problem 4: Clustering (10 points total),

o What can you say about the convergence and solutions found by the Lloyd's algorithm? How could
you take this into account in practical data analysis? (3 poinibs)

¢ In EM-algorithm if the probability of assigntment of the f-th observation to one of the K elusters
({Rf Yem1,,,) becomes 1 for all observations (e.g. for § = 8 hi = 1, for i = 5, h = 1 and a0 on),
then show that the EM-algorithin becomes Llove's algorithin for K-means clustering, (3 pointg)

Do three tberations of Lloyd's algorithm for K-means clustering on the 2-dimensional data below. Use
K = 2 clusters and the initial prototype vectors (smean vectors) my = (0.0, 2,01 ane mg = (2.0,0.00,
Whrite down culeulation procedure and the cluster memberships as well ag mean vectors after each
iteration. Draw the date points, cluster means and cluster boundary after each iteration.

J'.r

0.0, 1.0y
2| (1.0, 2.0)
4| (1.0, 5,0)
4| (5.0, 3.0)
5| (5.0, 4.0}
(4 polnts)

Problem 5: Principal Component Analysis (10 points total),

You have a dataset of N two-ditenslonal points ¥ You want to perform Pringipal Componeit Analysfs
(PCA) on the datasel, You have altendy estimated that the data i wero-mean and lhas the covarianos

malrix
10 6
3=[ b m}

and you know the covariance matrix can be diagonalized as CT8C « D where

o= 11 i

andd I')~[w n].

/v 178 0

Perform the following tasks;

a) Fxplain how the matrices C and D are related to Principal Component, Analysis, (2 points)
b} In 2-dimensional space, plot the POA coordinates (directions of the largest and second-largest varlanee
of the data) (3 polnis)
) Compute the proportion of variance explained by the first principal component. (2 points)
d) Define the principal components of the data by ' = GTy!, What s the covariance matrix of z'? (4

" boints),



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
3 September 2008 at 9-12.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

To get full points you must choose and complete five of the six problems.
Only the first five answers read by the examiner will be graded.

This examination has six problems (of which you must choose five) and two
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No other extra material is allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course.

The results will be announced in Noppa on 3 October 2008, at latest. No other
announcements will be sent.

You can keep this paper.

1. Model selection. Assume that you have at your disposal a training data.
set X = {(r*,x")}L,, where r* € {0,1} is a binary class and x* € R* is a
covariate vector of k real variables. Consider the problem of constructing
a predictor or classifier k(x) for the class r for data vectors x that do not
appear in the training data.

(a) Explain concepts “inductive bias”, “underfitting”, “overfitting”, “hy-
pothesis space” and “generalization” and their relation in the frame-
work of this problem.

(b) Give an example of a realistic hypothesis space for this problem.
(c) How could you estimate the prediction error for yet unseen data?

2. Bayesian probability theory. Consider the problem of finding the probabil-
ity that a coin flip gives “heads” given a set of observed coin flips (assume
that the probability of “heads” or “tails” can also be something else than
% of a fair coin).

(a) Demonstrate at least two prior probability densities for this problem,
compare them and explain their interpretation.

(b) Describe (using relevant concepts) how you could find the probability
of getting “heads” after observing IV coin flips for various choices of
prior probability density. Write down the essential formulae.

(c) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates and compare their properties.

3. Regression. Consider the problem of linear regression using least squares
estimates, given a data set of X = {(r!,x!)}L,, where r* € R is the
dependent variable and x* € R is the covariate vector of k real variables.



X

Figure 1: Toy data set for problem 5.

(a) Define a likelihood function and use it to derive the error function to
be maximized.

(b) Explain the difference between linear and polynomial regression.
4. Principal component analysis. Assume that your data X is N d-dimensional
real vectors, that is, X = {x*}{*;, x* € R?. Consider the problem of re-

ducing the dimensionality of your data to k dimensions, where k < d,
using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa-
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k? List some methods.

5. Classification trees.

(a) What is a classification tree? Define it.

(b) Describe the ID3 algorithm. What else do you need to take into
account when constructing a classification tree using a real world
data?

(c) Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (binary classification task in R?).

6. Logistic diserimination,

(a) Define logistic discrimination. What can it be used for?
(b) Derive the error function to be maximized in logistic discrimination.

(¢) Discuss the ways of optimizing this cost function. What do you need
to take into account?
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EXAMINATION
B, 19 December 2007 at 16-19.

To pass the course you must also pass the term project. Results of this
examination are valid for one year after the examination date.

To get full points you must choose and complete five of the six problems.
Only the first five answers read by the examiner will be graded.

This examination has six problems (of which you must choose five) and three
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No other extra material is allowed.

An important grading criterion is understandability: in addition to being
complete and correct, your answer should be understandable to your fellow
student who has the necessary prerequisite knowledge but has not yet taken
the course.

The results will be posted to the (blue binder at the) notice board on 19
January 2008, at latest, and also emailed to an address of form
12345X@students.hut.fi, where 12345X is your student number.

Please fill the course feedback form (open until 7 January 2008) at
http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute.html

You can keep this paper.

1. Model selection. Assume that you have at your disposal a data set
X = {(rt,x")},, where r* is a class and x* is a covariate; and a set
of k black box classification algorithms A;, i € {1,...,k}, which try to
predict the class 7, given the covariate x and the training data. More
formally, you can think A; as a known arbitrary function rpreprcTED =
A;(x, Xrparn), where rpreprcrep is the predicted class, given x, and
Xrrarn is the data used to train the classifier. Your task is to choose
and train the classification algorithm that would work best for yet un-
seen data. Describe, in detail, different ways how you could accomplish
this (and why). How do you expect the various classification errors to
behave?

2. Bayesian networks.



Figure 1: Bayesian network for problem 2.

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(C' | X,Y,Z ), given the net-
work in Figure 1, where C, X, Y and Z are binary random vari-
ables.

(c) What is the type of a classifier defined by the item (2b) above
commonly called?

3. Bayesian probability theory. Consider the problem of finding the prob-
ability that a coin flip gives “heads” (assume that the probability of
“heads” can also be something else than 3 of a fair coin).

(a) Using the concepts of prior and posterior probability density, de-
scribe (using formulae and figures) how you could find this prob-
ability after observing N coin flips for various choices of prior
probability density.

(b) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates. What would ML and MAP estimates be in
your coin flipping example?

4. Bias and variance dilemma. Explain the bias and variance dilemma,
with the relevant formulae, in the context of linear regression.

5. Linear discriminant analysis.

(a) Define the concept of linear discriminant analysis (LDA), and de-
rive the formulae for the case of two classes.

(b) What is the main difference between principal component anal-
ysis (PCA) and LDA? Demonstrate this difference by sketching




out how PCA and LDA would work with a toy data set of your
choosing.

6. Clustering. Consider the problem of clustering N real valued data
vectors into k clusters using the Lloyd’s algorithm, also known as the
k-means algorithm.

(a) Write the Lloyd’s algorithm in pseudocode.

(b) What can you say about the convergence and solutions found by
the Lloyd’s algorithm? How could you take this into account in
practical data analysis?



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

26 May 2014.

To pass the course you must also pass the term project. Results of this examination are valid for one year
aflter the examination date.

This examination has five problems each worth 10 points, and Lthree pages. You must answer in English.
Piease write clearly and leave a wide left or right margin. You can have a calculator, with memory erasec.

No other extra material is allowed.

The results will be announced in Noppa. You can keep this paper.

Problem 1: Explanations of concepts (10 points total)

Explain the terms below in the context of the course. If two terms are given, explain them so that is
heeomes clear what they have in common and what are the differences, Use [ull sentences.

& L P

=

. consistent hypothesis—version space (2 points)

receiver operating characteristics (ROC) curve (2 points)
Bayesian model averaging (2 points)
decision tree (2 points)

generalization ervor of a classifier (2 points)

Problem 2: Model Selection (10 points total)

o Explain what is the K-fold Cross Validation Scheme and write down one advantage and disadvantage

of it. {2 points)

Consider a parametric regression (Bayesian regression) scenario where we try to regress target values
r from one-dimensional inputs z using the regressor r = g(z|f) = ag -+ a 2 + azz®, where Lthe
parameters are @ = (eg, a1,az). We assume Gaussian noise p(r|z, 8) ~ N(g(x]0), a?) where o? is the
noise variance which is a known constant.

Assume we have observed N input points x; and their corresponding targets ri, Write down the
likelihood function of the model. (3 points)

Now suppose that we will also assume a Gaussian prior for the parameters, ag ~ N(0, 1/A), ay ~
N(0,1/A), ag ~ N(0,1/A), where 1/ is the prior variance of the parameters. Write down the
equation you need to maximize in order to find the maximum a posteriori (MAFP) estimate of the
parameters. (3 points)

s Explain the role of the constant A in the prior distribution, and how it causes regularization of the

learned parameters 8. (2 points)



Problem 5: Nonparametric Density Estimation (10 points total)

a) In the context of probability density estimation, explain the naive estimator and give its mathematical

definition. (2 points)
b) In the context of density estimation, explain the kernel estimator and give its mathemalical definition.

(2 points)
¢) You have observed seven one-dimensional data points whose coordinates are shown in the figure below,

Use the naive estimator with bin width h = 4 to estimate the probabilily density over the interval
[—6,6G]. Draw the density function. (3 points)

d) Using the same naive estimator as in part ¢), give the nunerical value of the probability density at the
locations —4.25, —0.75, and 1.5. (3 points)

A B CD E F G
e oo 4|4 -
-5-5 3*2 -1 0 1 2 4 6

Figure 1: Observed data points for problem 5 d). For convenience the data points are labeled A-G,



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
25 October 2013.

To pass the course you must also pass the term project. Results of this examination are valid for one year
after the examination date.

This examination has five problems each worth 10 points, and two pages. You must answer in English.
Please write clearly and leave a wide left or right margin. You can have a calculator, with memory erased.
No other extra material is allowed.

The results will be announced in Noppa. You can keep this paper.
Problem 1: Explanations of concepts (10 points total)
Explain the terms below in the context of the course. If two terms are given, explain them so that is
becomes clear what they have in common and what are the differences. Use full sentences.
1. consistent hypothesis—version space (2 points)
overfitting—underfitting (2 points)
histogram estimator—naive estimator, in context of density estimation (2 points)

expected utility in classification (2 points)

gr o= o

k-fold cross-validation (2 points)

Problem 2: Bayesian Decision Theory and Parametric Methods (10 points).

a) Consider X1, Xs,...,X, are i.i.d. observations from a model P(X|6) with unknown parameter 6. If
you want to estimate § following Bayes Theorem, answer the following first:

e What do the concepts prior, likelihood and posterior mean in the above problem? Write with
mathematical notation. You do not have to define specific functions for the prior, likelihood, and
posterior, just explain what the concepts are. (2 points)

e How can you compute the posterior if you know the prior and likelihood? (2 points)
e If you know the posterior density of #, how can you compute the Bayes estimate of 7 You do
not have to perform the computation, just explain how it would be done. (2 points)

b) Suppose in a), the observations X1, Xy,..., X, are light bulbs where each bulb X; is either working
(X; = 0) or broken (X; = 1), and we have observed n = 10000 bulbs. We assume the model P(X|)
is a Bernoulli process, where the parameter 6, 0 < 6 < 1, is the probability for a bulb being broken.
Then answer the following:

e We want to use a flat prior (also known as a uniform prior) for §. Write the equation of the prior.
(1 point)
o Write the expression of the posterior density of 6. (3 points)

Problem 3: Clustering (10 points).

o Give one example of Hard and Fuzzy Clustering (also called Soft Clustering). Explain the differences
between these two types of clustering. (2 points)

e Suppose you are performing an iteration of K-means clustering, and you know the set of K cluster
means m;. What would be the error function that you need to minimize to assign observations to
the clusters? (2 points)

o Write the Lloyd’s algorithm in pseudocode. (4 points)

o Does the solution of K-means depend on the initial location of the cluster means? If yes, how can
you try to get better solutions? If not, why not? (2 points)

—_—



Problem 4: Principal Component Analysis (10 points total)

You have a data set of the following five two-dimensional points:

{1215 (D

You want to reduce the dimensionality of the data points to one, using Principal Component Analysis.
You have already estimated that the data is zero-mean and has a covariance matrix of

10 6
B { 6 10 }
and you know the covariance matrix can be diagonalized as CTSC = D where

o[ A o [¥ 2]

Perform the following tasks.

a) Explain how the matrices C and D are related to Principal Component Analysis. (1 points)

b) Reduce the dimensionality of the data to one, by computing the projections of the five data points
onto the first principal component. It is enough to do the computation for the first two data points.
(8 points)

¢) Compute the proportion of variance explained by the first principal component. (2 points)

d) Reconstruct the original data points approximately, by projecting the coordinates computed in step
a) back into the original space. It is enough to do the computation for the first two data points. (2
points)

e) Compute the reconstruction error. If you reconstructed just the first two data points in step c), it is
acceptable to use only those two points in this step. (2 points)

Problem 5: Nonparametric Classification (10 points).

‘You have acquired the training data shown in the scatter plot below, where circles are locations of data
points, ‘+’ signs are data from the positive class and ‘-’ signs are data from the negative class. You also
have three validation points marked as 1, 2, and 3 in the scatter plot. You know that validation point 1
comes from the positive class and validation points 2 and 3 come from the negative class.

a) Explain the principle of k-nearest neighbor classification. Write the necessary equations for the case
k = 1. (3 points)

b) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 1. (2 points)

¢) Classify the three validation points based on the training set, using k-nearest neighbor classification
with & = 5. (3 points)

d) Compute the classification errors on the validation set, and choose the best complexity for the classifier
(choose k =1 or k = 5). (2 points)




T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

25 October 2013.

To pass the course you must also pass the term project. Results of this examination are valid for one year
after the examination date.

This examination has five problems each worth 10 points, and two pages. You must answer in English,
Please write clearly and leave a wide left or right margin. You can have a calculator, with memory erased.
No other extra material is allowed.

The results will be announced in Noppa. You can keep this paper.
Problem 1: Explanations of concepts (10 points total)
Explain the terms below in the context of the course. If two terms are given, explain them so that is
becomes clear what they have in common and what are the differences. Use full sentences.
1. consistent hypothesis—version space (2 points)
overfitting—underfitting (2 points)
histogram estimator—naive estimator, in context of density estimation (2 points)

. expected utility in classification (2 points)

A -

k-fold cross-validation (2 points)

Problem 2: Bayesian Decision Theory and Parametric Methods (10 points).

a) Consider Xy, Xg,..., X, are i.i.d. observations from a model P(X|0) with unknown parameter . If
you want to estimate @ following Bayes Theorem, answer the following first:

e What do the concepts prior, likelihood and posterior mean in the above problem? Write with
mathematical notation. You do not have to define specific functions for the prior, likelihood, and
posterior, just explain what the concepts are. {2 points)

e How can you compute the posterior if you know the prior and likelihood? (2 points)
e If you know the posterior density of #, how can you compute the Bayes estimate of 87 You do
not have to perform the computation, just explain how it would be done. (2 points)

b) Suppose in a), the observations X1, X,..., X, are light bulbs where each bulb X, is either working
(X; = 0) or broken (X; = 1), and we have observed n = 10000 bulbs, We assume the model P(X|6)
is a Bernoulli process, where the parameter ¢, 0 < ¢ < 1, is the probability for a bulb being broken.
Then answer the following:

o We want to use a flat prior (also known as & uniform prior) for §. Write the equation of the prior.
(1 point)
e Write the expression of the posterior density of 8. (3 points)

Problem 3: Clustering (10 points).

¢ Give one example of Hard and Fuzzy Clustering (alse called Soft Clustering). Explain the differences
between these two types of clustering. (2 points)

e Suppose you are performing an iteration of K-means clustering, and you know the set of K cluster
means m;. What would be the error function that you need to minimize to assign observations to
the clusters? (2 points)

o Write the Lloyd’s algorithm in pseudocode. (4 points)

» Does the solution of K-means depend on the initial location of the cluster means? If yes, how can
you try to get better solutions? If not, why not? (2 points)

S



Problem 4: Principal Component Analysis (10 points total)

You have a data set of the following five two-dimensional points:

{31515 ])

You want to reduce the dimensionality of the data points to one, using Principal Component Analysis.
You have already estimated that the data is zero-mean and has a covariance matrix of

{10 6
8= { 6 10 }
and you know the covariance matrix can be diagonalized as CTSC = D where

o- (13 4] wa m-[¥ 2]

Perform the following tasks.

a) Explain how the matrices C and D are related to Principal Component Analysis. (1 points)

b) Reduce the dimensionality of the data to one, by computing the projections of the five data points
onto the first principal component. It is enough to do the computation for the first two data points.
(3 points)

c¢) Compute the proportion of variance explained by the first principal component. (2 points)

d) Reconstruct the original data points approximately, by projecting the coordinates computed in step
a) back into the original space. It is enough to do the computation for the first two data points. (2
points)

¢) Compute the reconstruction error. If you reconstructed just the first two data points in step ¢}, it is
acceptable to use only those two points in this step. (2 points)

Problem 5: Nonparametric Classification (10 points).

You have acquired the training data shown in the scatter plot below, where circles are locations of data
‘points, ‘+' signs are data from the positive class and ‘-’ signs are data from the negative class. You also
have three validation points marked as 1, 2, and 3 in the scatter plot. You know that validation point 1
comes from the positive class and validation points 2 and 3 come from the negative class.

a) Explain the principle of k-nearest neighbor classification. Write the necessary equations for the case
= 1. (3 points)

b) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 1. (2 points) ‘

¢) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 5. (3 points)

d) Compute the classification errors on the validation set, and choose the best complexity for the classifier
(choose k = 1 or k = 5). (2 points)

4
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27 April 2013.

To pass the course you must also submit the term project. Results of this
examination are valid for one year after the examination date.

This examination has five problems each worth 10 points, and 4 pages. You have
to answer in English. Please write clearly and leave a wide left or right margin.
You can have a calculator, with memory erased. No other extra material is
allowed.

The results will be announced in Noppa on May 26, at latest.

You can keep this paper.

1. Multiple choices questions (10 points). The following five questions have
different. proposed answers. Only one of them is correct. You have to
give your answer along with your confidence (“High” or “Low™) for each
answer. Grading for each of these questions is then:

e —2 if the answer ig correct and confidence High
e —1 if the answer is correct and confidence Low
e 0 if the answer is missing

e -1 if the answer is wrong and confidence Low

e 2 if the answer is wrong and confidence High

Write on your answer sheet the correct answer A, B, C, D,...) along with
the confidence vou have (High or Low) for that question. For example,
“A, Low” is a proper way of answering a question. No need to justify your
answers. Total score for this question is between 0 and 10 (you cannot get
a negative score for the whole question). s

1) For a binary classification problem, each class is inodeled using a Mul-
tivariate Normal {Gaussian) Distribution. A Bayes classifier is calcu-
lated.

A) The boundary is always linear.

B) The boundary is nonlinear (not purely linear).

C) The boundary is independent from the priors of the classes.

D) The boundary can always separate the classes perfectly (for the
training set).

E) None of the previous answers is correct

2) For a multidimensional dataset, a Principal Component Analysis (PCA)
is performed.

A) The average reconstruction error is always increasing with the di-
mension of projection.

B) The projection is independent, from. the variances of the input vari-
ables.



C) The average reconstruction error is never increasing with the di-
mension of projection.
D) The projection dimension has to be larger than the number of
points and the number of variables (samples).
E) None of the previous answers is correct
3) The Lloyd’s algorithm is used to perform clustering.
A) This algorithm will never converge and has to be stopped after an
arbitrary nurnber of iterations.
B) The error function which is minimized can increase for some itera-
tions but is globally decreasing.
C) The Lloyd’s algorithm will always converge to the best clustering
solution.
D) The Lloyd’s algorithm is dependent from the initialization.
E) None of the previous answers is correct
4} For a binary classification problem, a K-Nearest-Neighbor (KNN) Clas-
er is built.
A) The clas
parameter K.
B) The best value for K is always 3.

si

ation error is always decreasing with respect to the

() The parameter K cannot be optimized using validation.

D) The performances of the KNN classifier are independent from the
distance metric which is used.

E) None of the previous answers is correct

5) A k-fold cross-validation is used to determine the optimal complexity
of a regression model.

A) The cross-validation error is a perfect estimate of the generalization
performances of the regression model.

B) The best value for k is always 2.

C) The best value for k is always 10.

D) The complexity selected by the k-fold cross-validation is always
larger than the complexity selected using a Bayesian Information
Criterion (BIC) regularization.

E) None of the previous answers is correct

9. Model selection. Assume that you have at your disposal a data set X ==
{(rt,x*)}Y ,, where rt is a class and x* is a covariate; and a set of & black
hox classification algorithms A;, ¢ € {1,...,k}, which try to predict the
class r, given the covariate x and the training data. More formally, you can
think A; as a known arbitrary function rprepreren = Adx, Xrrar N
where rpreprorep 18 the predicted class, given x, and Xrpary is the
data used to train the classifior. Your Lask is to chioose and train the clas-
sification algorithm that would work best for yet unseen data. Describe,
in detail, different ways how vou could accomplish this {and why). How

do vou expect the various classification errors to behave? (10 points)




3. (a) Mazimum Likelihood (4 points). Consider a univariate data set
X = (2!, 2%,...,2") that has a log-normal distribution. Find the
maximum likelihood estimates of the mean u and variance o2. The
probability density function is given by

play = 22 exp(_@ﬁ_fﬂf» =

T/ 2o 202

(b) Naive Bayes (6 points). Consider binary classification for multivari-

Assume that

e 7 is Bernoulli distributed with P(r = 1) = 7.

e Variable x;, i = 1,...,d is continuous and normally distributed
with P(z;|r = k) = N(jix. 07). The variance o7 is class inde-
pendent!

e All variables are independent of each other given the class label
r (Naive Bayes assumption).

Show that the posterior distribution P(r = 1|x) can be written in
logistic form, i.e.

1

. = ¢
1+ exp(wo + 35, w;%;j)

and write down the expressions for wy and wy, 7= 1,...,d.
4. Feature selection. Consider the feature selection in classification problems.

(a) What is feature selection and why is it needed? (4 points)

(b) Asswume that you have a binary classification algorithm. Explain. also
using pseudocode, how you would implement forward and backward
selection of features (in a real world application). (4 points)

(c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(2 points)

o



5. Consider the problem of clustering N real valued data vectors into k clus-
ters using the Lloyd’s algorithm, also known as the k-means algorithm.

(a) Write down the Lloyd’s algorithm in pseudocode. Pay attention to
clearly marking the inputs and outputs of each function. Include an
initialization in your algorithm. (6 points)

(b) What can you say about the convergence and solutions found by the
Lloyd’s algorithm? How could you take this into account in practical
data analysis? (4 points)



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

26 October 2012.

To pass the course you must also submit the term project. Results of this
examination are valid for one year after the examination date.

This examination has five problems each worth 10 points, and 4 pages. You have
to answer in English. Please write clearly and leave a wide left or right margin.
You can have a calculator, with memory erased. No other extra material is

allowed.

The results will be announced in Noppa on November 25, at latest.

You can keep this paper.

1. Multiple choices questions (10 points). The following five questions have
different proposed answers. Only one of them is correct. You have to
give your answer along with your confidence (“High" or “Low”) for each
answer. Grading for each of these questions is then:

o +2if the answer is correct and confidence High
o -+1 if the answer is correct and confidence Low
e 0 if the answer is missing

e —1 if the answer is wrong and confidence Low

o —2if the answer is wrong and confidence High

Write on your answer sheet the correct answer A, B, C, D,...) along with
the confidence you have (High or Low) for that question. For example,
“A, Low” is a proper way of answering a question. No need to justify your
answers. Total score for this question is between 0 and 10 (you cannot get
a negative score for the whole question).

1)

For a binary classification problem, each class is modeled using a Mul-

tivariate Normal (Gaussian) Distribution. A Bayes classifier is calcu-

lated.

A) The boundary is always linear.

B) The boundary is always nonlinear.

C) The boundary is independent from the priors of the classes.

D) The boundary can never separate the classes perfectly (for the
training set).

E) None of the previous answers is correct

For a multidimensional dataset, a Principal Component Analysis (PCA)
is performed.

A) The average reconstruction error is never increasing with the di-
mension of projection. ;' -4

B) The projection is independent from the variances of the input vari-
ables.



C) The average reconstruction error is always increasing with the di-
mension of projection.

D) The projection dimension has to be larger than the number of
points and the number of variables (samples).

E) None of the previous answers is correct

3) The Lloyd’s algorithm is used to perform clustering.

A) This algorithm will never converge and has to be stopped after an
arbitrary number of iterations.

B) The error function which is minimized can increase for some itera-
tions but is globally decreasing.

C) The Lloyd’s algorithm will always converge to the best clustering
solution.

D) The Lloyd’s algorithm is independent from the initialization.

E) None of the previous answers is correct < -

4) For a binary classification problem, a K-Nearest-Neighbor (KNN) Clas-

sifier is built.

A) The classification error is always decreasing with respect to the
parameter K. Y

B) The best value for K is always 1.

C) The parameter K can be optimized using validation.

D) The performances of the KNN classifier are independent from the
distance metric which is used.

E) None of the previous answers is correct

5) A k-fold cross-validation is used to determine the optimal complexity
of a regression model.

A} The cross-validation error is a perfect estimate of the generalization
performances of the regression model.

B) The best value for k is always 2.
C) The best value for k is always 10.

D) The complexity selected by the k-fold cross-validation is always
larger than the complexity selected using a Bayesian Information
Criterion (BIC) regularization.

E) None of the previous answers is correct

2. Model selection. Assume that you have at your disposal a data set X =
{(rt,x})}},, where 7 is a class and x* is a covariate; and a set of k black
box classification algorithms 4,, 4 € {1,...,k}, which try to predict the
class r, given the covariate x and the training data. More formally, you can
think A; as a known arbitrary function rprepiocrep = Ai(X, XTRAIN),
where rpreprorep 18 the predicted class, given x, and Xrrajn 18 the
data used to train the classifier. Your task is to choose and train the clas-
sification algorithm that would work best for yet unseen data. Describe,
in detail, different ways how you could accomplish this (and why). How
do you expect the various classification errors to behave? (10 points)



3. (a) Mazimum Likelihood (4 points). Consider a univariate data set
X = (2',22,...,2") that has a log-normal distribution. Find the
maximum likelihood estimates of the mean p and variance o2. The
probability density function is given by

11 (Inz — pu)?
p(z) = Vo exp < 552 , x>0

(b} Naive Bayes (6 points). Consider binary classification for multivari-
ate data X = {(r*,x")}seq1,.,n}, where r* € {0,1} and x* € R,
Assume that

o r is Bernoulli distributed with P(r =1) = 7.

e Variable z;, 1 = 1,...,d is continuous and normally distributed
with P(z;|r = k) = N (pk,02). The variance o7 is class inde-
pendent!

o All variables are independent of each other given the class label
r (Naive Bayes assumption).

Show that the posterior distribution P(r = 1|x) can be written in

logistic form, i.e. E
1

1+ exp(wp + Z;i:l w,x;)

P(r=1Jx) =

and write down the expressions for wg and w;, j=1,...,d.
4. Feature selection. Consider the feature selection in classification problems.

(a) What is feature selection and why is it needed? (4 points)

(b) Assume that you have a binary classification algorithm. Explain, also
using pseudocode, how you would implement forward and backward
selection of features (in a real world application). (4 points)

(c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(2 points)
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5. Combining classifiers (a) Explain why is it a good idea to teach several

different classifiers and use majority voting as the final classification. (2
points) (b) Why does this approach work better if the individual base-
learners are as different as possible? (2 points) (c) Give at least four ways
to make them different. (4 points) (d) Assuming each base learner gives
a correct classification with probability p and the classification errors are
independent of each other, what is the probability that a majority vote
over L classifiers gives the correct answer? (2 points)



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
6 August 2012.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

This examination has five problems in two pages. Each problem is worth 6
points. Please write clearly and leave a wide left or right margin. You can have
a calculator, with memory erased. No other extra material is allowed.

You can keep this paper.

1. Write about the terms below in the context of the course, e.g. what is in
common and what are the differences. Use full sentences in your answer.

(a) supervised learning—unsupervised learning (2 points)
(b) classification—clustering (2 points)
(c) empirical error—generalization error (2 points)
2. Consider the problem of linear regression using least squares estimates,

given a data set of X = {(r?,z?)}Y,, where r* € R is the output (variate)
to be predicted and z* € R is the input (covariate).

(a) Write the model equation r* = g(z? | 8) = ... and the error function
E(6 | X) to be minimized. (2 points)
(b) Give the solution of the parameters 6 either as mathematical equa-

tions or as pseudocode. (If you have memorized the solution, explain
with a few words how you could have derived it.) (2 points)

(c) How could you estimate the prediction error for yet unseen data? (2
points)

3. Principal Component Analysis (PCA)

(a) Do the PCA learning using the 2-dimensional data set in the table
below. Describe the steps of your solution. (4 points)

(b) Compute the proportion of variance (PoV) explained by the first
principal component. (1 point)

(c) Find the reconstruction % of point x = [4.0 7.0]7 with the first prin-
cipal component. (1 point)

T @b
20 2.0
30 40
5.0 6.0




4. Consider the problem of clustering N real valued data vectors into k clus-
ters using the Lloyd’s algorithm, also known as the k-means algorithm.

(a) Write down the Lloyd’s algorithm in pseudocode. Pay attention to
clearly marking the inputs and outputs of each function. Include an
initialization in your algorithm. (4.5 points)

(b) What can you say about the convergence and solutions found by the
Lloyd’s algorithm? How could you take this into account in practical
data analysis? (1.5 point)

5. Classification tree
(a) What is classification tree? Define it. (1 point)

(b) Sketch the running of the vanilla ID3 algorithm with a toy data set
in the figure below (binary classification task in R?). (4 points)

(c) How to avoid overfitting in the vanilla ID3 algorithm? (1 point)
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