Perustieteiden korkeakoulu, teknillisen fysiikan laitos

PHYS-E0562 Ydinenergiatekniikan jatkokurssi

Tentti 16.9.2014
Kirjoita jokaisen vastauspaperin ylälaitaan

- kurssin numero ja nimi
- tentti 16.9.2014
- nimesi ja opiskelijanumerosi

Graafinen laskin muisti tyhjennettynä on sallittu apuväline. Kirjaa eikä luentomateriaaleja ei saa käyttää kokeessa.

1. Valitse oikea vaihtoehto.
(a) Monte Carlo -menetelmä neutroniikkaratkaisijana soveltuu erityisesti
A) kevytvesireaktorin polttoainenipun suunnitteluun B) reaktorin kokosydänlaskuihin C) kriittisyysturvallisuusanalyyseihin D) mikroskooppisten vaikutusalojen generointiin.
(b) Mikä seuraavista voi aiheuttaa merkittävän positiivisen tehotransientin LWR:ssä A) jäähdytteen booripitoisuuden lasku PWR:ssä B) säätösauvojen absorbaattorin kuluminen käytön aikana C) jäähdytteen booripitoisuuden lasku BWR:ssä D) generaattorin pikasulku.
(c) Doppler -takaisinkytkentä on käytännössä aina negatiivinen. Tämä johtuu
A) fissiomyrkkyjen synnystä B) väliaineen vtimien lämpöliikkeen mutoksesta
C) moderoinnin heikentymisestä D) moderaattorin lämpötilan kasvusta.
(d) Mikä seuraavista vapautumisesteistä on uloimpana Suomen ydinjätteen loppusijoituskonseptissa?
A) valurauta B) bentoniitti C) polttoaineen suojakuori D) kupari.
(e) Mikä seuraavista radioaktiivisista jätteistä on korkea-aktiivista?
A) paineastia B) ioninvaihtohartsi C) käytetty polttoaine D) uraanikaivoksen hylkykivi.
(f) Noin puolet suomalaisen keskimääräisestä säteilyannoksesta aiheutuu
A) röntgendiagnostiikasta B) ydinvoiman tuotannosta C) Tšernobyl-laskeumasta
D) huoneilman radonista.
(g) YVL-ohjeen mukaan vakavassa reaktorionnettomuudessa ulkoilmaan vapautuvan ${ }^{137} \mathrm{Cs}$-päästön $\left(T_{1 / 2}=30 \mathrm{a}\right)$ raja on
A) $100 \mathrm{TBq} \mathrm{B)} 31 \mathrm{~kg} \mathrm{C)} 200$ manSv D) 200 mSv .
(h) Edellisen kohdan päästö vastaa

$$
\text { A) } 100 \mathrm{MBq} \mathrm{B)} 31 \mathrm{~g} \mathrm{C)} 200000 \text { manSv D) } 200 \mu \mathrm{~Sv} \text {. }
$$

2. (a) Onnettomuusriskin hallinta ydinvoimalaitoksilla
(b) Esittele lyhyesti kaksi fysikaalista ilmiötä, jotka edistävät radionuklidien kulkeutumista loppusijoitustilasta elinympäristöön.
(c) Esittele lyhyesti kaksi fysikaalista ilmiötä, jotka estävät radionuklidien kulkeutumista loppusijoitustilasta elinympäristöön.
KÄÄNNÄ!
3. Laske 370 cm korkean, halkaisijaltaan 340 cm olevan sylinterimäisen painevesireaktorin kasvutekijä käyttäen kaksiryhmädiffuusioteoriaa

Ryhmävakio		Ryhmä 1	Ryhmä 2
Σ_{f}	$\left(\mathrm{~cm}^{-1}\right)$	0.008476	0.1851
Σ_{f}	$\left(\mathrm{~cm}^{-1}\right)$	0.003320	0.07537
Σ_{a}	$\left(\mathrm{~cm}^{-1}\right)$	0.01207	0.1210
$\Sigma_{r, g}$	$\left(\mathrm{~cm}^{-1}\right)$	0.02619	0.1210
D	$(\mathrm{~cm})$	1.2627	0.3543

4. Oletetaan, että $1 / v$-absorboijaa lisätään yhtäkkiä äärettömään väliaineeseen, jossa on energiajakaumaltaan Maxwellinen neutronipopulaatio.
(a) Osoita, että väliaineen neutronien kokonaistiheys vähenee ajan kuluessa, mutta energiajakauma ei muutu.
(b) Selitä kvalitatiivisesti, miten energiajakauma muuttuu ei- $1 / v$-absorboijan tapauksessa.
5. Pienellä teholla toimiva reaktori saatetaan kerkeästi kriittiseksi $3 \$$:n reaktiivisuuslisäyksellä. Johda lauseke pulssin maksimilämpötilalle. Oleta pistekinetiikka, jossa viivästyneiden neutronien osuus tehon kasvuun on vähäinen. Reaktiivisuuden lämpötilatakaisinkytkentä on lineaarinen ja lämpöä siirtyy pois polttoaineesta vakiomäärä
aikayksikössä.
