Ene-39.4048 NATURAL GAS ENGINEERING

EXAM 2 - 16.2.2015

Maximum points 300

Question 1

Explain briefly:

- a) the LNG (liquid natural gas) supply chain ('dwell to wheel') (\sim 200 words) (max. 50p)
- b) the traditional pipeline gas supply chain and what are the pros and cons between the LNG supply chain and the pipeline supply chain. (~200 words) (max. 50p)

Question 2

Describe the main bio-based gas production routes(s): raw materials, their process routes and gas output qualities. (~200 words) (max. 50p)

Question 3 - Heating values in condensing boilers

Water flow (W) is heated in a condensing boiler by natural gas (NG), which consists of methane (98 mol-%) and nitrogen (2 mol-%). Condensation of water vapor in the flue gas (FG) is assumed to be complete i.e. all of the water in the flue gases is liquefied before exiting the boiler.

- a) What is the water output temperature? Use HHV of methane. (max. 35p)
- b) What is thermal efficiency of the boiler determined by LHV of the gas? (max. 15p)

$H_{HHV,CH4}$	HHV of methane	39,82 MJ/m ³
$H_{LHV,CH4}$	LHV of methane	35,88 MJ/m ³
$\dot{V_{NG}}$	Gas flow	5,1 m ³ /h
m_W	Water flow	1400 kg/h
$T_{in,W}$	Input water temperature	20 °C
$c_{P,W}$	Specific heat capacity of water	4,18 kJ/kgK
η_{th}	Thermal efficiency (from HHV) of the boiler	92,5 %

Question 4 - Gas combustion and flue gas losses

A furnace is fuelled by natural gas, composition of which is:

Methane 97,8 vol-% Nitrogen 2,2 vol-%

Thermal input (fuel energy input) to the furnace is 3,7 MW and the air factor for combustion is 1,25. Lower heating value of methane is $9,965 \text{ kWh/m}^3$.

- a) How much combustion air (m³ per hour) is needed when the furnace operates at full capacity based on the LHV of methane? Start from the chemical reaction in combustion. (max. 50p)
- b) What's the composition of flue gas (vol-%) when the combustion is assumed to be stoichiometric (the air factor is still 1,25)? (max. 50p)

Densities of gases:

Composition of air:

Nitrogen 0,769 kg_{N2}/kg_{air} 0,791 m_{N2}^{-3} / m_{air}^{-3} Oxygen 0,231 kg_{O2}/kg_{air} 0,209 m_{O2}^{-3} / m_{air}^{-3}