T-106.5600 Concurrent Programming p Exam - December 12, 2014

Instructions:

Be concise and clear. Simplicity is an grading criterion. Use of books, notes, any other refer-
ence materials or digital utilities is not allowed. Ensure that every answer sheet contains your
name, student number, the course code and the total number of answer sheets submitted for
grading. Place the answer to each question on a separate page. Please place answers to ques-
tions 1 and 2 on one sheet of paper and the answers of 3, 4 and S on another sheet, this will
help speed up the grading process.

1. Select three topics from the following list. Define the concepts and write a short essay on
the topic.

(a) Differences between processes and threads
(b) Amdahl’s law and scalability of parallelism
(c) Concurrency hazards: race conditions, deadlocks and livelocks
(d) Differences between the general monitor and the corresponding Java construct
2. Using axiomatic reasoning (the invariant method), prove or disprove that the following
algorithm for two threads satisfies:
(a) Mutual exclusion of the critical sections of P and Q

(b) Liveness

boolean wantp « false, wantq « false
integer turn « 1
P Q
loop forever loop forever
pi: non-critical section qi: hon-critical section
p2. wantp « true gz wantq « true
1 if wantq ¢ 1f wantp
pa: iftumm =2 o4 iftum=1
ps: wantp « false ¢s: wantq « false
Pt awaittum=]1 o await turn = 2
pT: Wantp + true qm: wantq « true
p8: await wantq = false ¢ — await wantp = false
po: critical section g critical section
pio: wantp « false qio. wantq « false
pil: tumn « 2 q: turn « |1

Page 1 of 4

(6)

(6)

T-106.5600 Exam December 12, 2014

3. Implement an exchanger in Java according to the following interface. You may assume that (6)
the data objects are unique and not null. You may not use java.util.concurrent.
You may use collections from java.util.

/x%
* A synchronization point at which threads can pair and swap data elements
* of type T within pairs. Each thread presents a data element on entry to the
« exchange method, matches with a partner thread, and receives its partner’s
= data element in return.
* @param <T>
+

public interface Exchanger<T> {

o e =N O e W N -

10 /%%

1 + Wait for another thread to arrive at this exchange point (unless the

12 * current thread is interrupted), and then transfers the given data element
13 x 1o the other thread, receiving it’s data element in return.

i * @param dataElement to give to another thread

15 * @ return dataElement received from another thread

16 * @throws InterruptedException

¥) *

18 public T exchange(T dataElement) throws InterruptedException;
19}

4. Implement a latch using a tuple space and the operations postnote, readnote and (6)
removenote. A latch is a synchronization mechanism which allows multiple threads to
wait for a single event, the release of the latch. When the latch is released, all threads that
are currently waiting on the latch can proceed again. The latch can be used multiple times.
Explain the content and purpose of all of the tuple types.

operation initialize():
//add code

operation await():
//Block until release() is called
//add code

operation release():
//Release all threads currently blocked on await ()
//add code

Page 2 of 4

T-106.5600 Exam December 12, 2014

5. Analyse the following single producer, single consumer system. Define requirements that (6)
the system must meet for it to be correct. Define a set of invariants which capture the
correctness of the system. You do not need to prove the invariants. Show that the system

is totally correct.
You may use the following assumptions:

1. The methods produce () and consume () will always eventually return
2. The method produce () will eventually always return a null value
3. The system is started by (new Consumer<Datatype>()).start()
Hints: Start with invariants for Semaphore, BlockingQueue and then use these in construct-

ing invariants for the Producer and the Consumer. Consider constructing the invariants for
Semaphore and BlockingQueue based on their state before a method call and after that call

returns.

Semaphore.java

public class Semaphore {
private int value;

1
2
3 public Semaphore(int v) { this.value = v; }
4
5 public synchronized void acquire() throws InterruptedException {
6 while(this.value < 1) {
7 this.wait();
8 }
9 this.value——;
10 }
11
12 public synchronized void release() {
13 this.value++;
14 this.notify();
15 }
T
BlockingQueue.java

import java.util. ArrayDeque;
import java.util.Queue;

1

2

3

s public class BlockingQueue<T> {

s private static final int CAPACITY = 3;

6

7 private final Queue<T> queue = new ArrayDeque<T>();
8 private final Semaphore isFull = new Semaphore(0);

9 private final Semaphore isEmpty = new Semaphore(CAPACITY);
10

1 public T get() throws InterruptedException {

12 T ilem;

13 isFull.acquire();

14 item = queue.remove();

15 isEmpty .release();

16 return item;

Page 3 of 4

T-106.5600 Exam

December 12, 2014

public void put(T item) throws InterruptedException {

Y isSEmpty.acquire();
21 queue.add(item);
2 isFull.release();
z }
2}
Producer.java
i public class Producer<T> extends Thread {
2 private final BlockingQueue<Ts queue;
3 public Producer(BlockingQueue<T> q) { this.queve = q;)
4
5 public void run() {
6 T data;
7 while(true) {
8 try {
9 data = produce();
10 queue.put(data);
n) catch (InterruptedException e) { break;)
12 }
13 }
14
15 public T produce() {
16 //Code omitted
17 return anlnstanceOfT;
18 }
19}
Consumer.java
1 public class Consumer<T> extends Thread {
2 private final BlockingQueue<T> queue = new BlockingQueue<T>();
3 private final Producer<T> producer = new Producer<T>(queue);
4
5 public void run() {
6 producer.start();
7 T data;
8 try {
9 do {
10 data = queue.get(),
n consume(data);
12 } while(data != null);
13) catch (InterruptedException e) {
14 } finally {
15 producer.interrupt();
16 }
17 }
18
19 private void consume(T data) {
20 //Code omitted
2 }
n)

Page 4 of 4

