T-61.5140 Machine Learning: Advanced Probabilistic Methods
Marttinen, Remes
Examination, April 9th, 2015 at 9:00 o’clock.

In order to pass the course, you must also pass the term project. Results of the examination are valid
for one year after the examination date. In the exam, you are allowed to have with you 1) printed out
lecture slides with notes written by you, 2) printed out PDFs for the 'simple examples’ (simple _vb_example,
simple_em_example), 3). calculator with memory erased. Note that the distributions required in the exam
are provided at the end of the exam sheet.

1) Belief (Bayesian) networks

A) True or false? Justify your answer briefly, in max 2 sentences. (correct answer and justification: 1p per
question).

1. C and E are d-separated by {4, F'} in Fig. 1.

2. A and G are d-separated by {C, E} in Fig. 1.

3. The Markov equivalence class to which the graph in Fig. 2 belongs has three members.
B) Answer the questions (1.5p each)

1. Factorize the probability distribution p4, g c,p(a,b,¢,d) according to the graph in Fig. 2.

2. Write down the formula to compute pgy4,5,p(cla, b, d) for the distribution represented by the graph in
Fig. 2.

Fig. 1 Fig. 2

2) EM algorithm

Consider N observations z,,, n =1,..., N, from a two-component mixture model of exponential distributions
p(zn)0, A1, A2) = 0 Exp(zn] A1) + (1 — 6) Exp(zn]A2).

Represent the model using latent variables and derive the E and M steps of the expectation maximization
algorithm to learn the maximum likelihood estimates of the parameters (6, Ay, Ag).

3) Variational approximation

A) Compute the Kullback—Leibler divergence K L(q, p) between g(z) =Uniform(z|a,b) and p(z) = N(z|0,1).
B) Approximate the Gaussian N(0,1) distribution using a variational approximation with approximating
distribution ¢(z) =Uniform(z|a,b). The distribution ¢ has two parameters, a and b, which you have to

optimize.
!



4) Gibbs sampling

Consider the factor analysis model

Xn ~ Np (Wzn,diag('z/))_l),' n=1,...,N
Pg ~ Gamma(a,b), d=1,...,D

Wi ~Np(0,01), k=1,...,K

z, ~Ng(0,I), n=1,...,N,

where W denotes the loadings for the kth factor and 9" is the specific noise variance of the dth observed
variable. Furthermore let D denote the number of observed variables (i.e. x, € RP), N the number
of data points, and K the number of factors in the model. diag(v) is a diagonal matrix with elements
P =(¢y,... ,1/JD)T on the diagonal.

A) Write down pseudo-code for the Gibbs sampler to generate samples from the posterior distribution
p(¥, W, z|x), where we have denoted z = (21,...,2,) and x = (z1,..., Zn). The exact forms of the distrib-
utions are not required here.

B) Derive the conditional distribution p(y4|%_y4, W, 2, %) required in the Gibbs sampler. Here v_y
denotes vector ¢ from which the dth element has been removed. Hints: start by writing the likelihood
proportionally s.t. all terms not dependent on 1, have been discarded. Note that a multivariate Gaussian
with a diagonal covariance matrix can be expressed as a product of univariate Gaussian distributions.

5) Miscellaneous

Briefly (max. 4 sentences each) explain the terms/concepts and their usage/relevance in the context of the
course (1.5p each).

1. proposal distribution

2. rotation invariance in the factor analysis models
3. marginal likelihood

4. Markov chain Monte Carlo (MCMC)
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