Examination

School of Electrical Engineering
12.1.2015

Department of Communications and Networking
Lassila
ELEC-C7210 Modeling and analysis of communication networks, Autumn 2014

Answers briefly:

1. This is about applying Little's law.
a) 6 customers
b) 5.2 customers (total number minus number in service)
c) 0.8 customers (same as load of the system)
d) 20 customers (system is stable so flow in = flow out)

Grading: Each question gave 1.5 points and for the final points, the total was rounded to closest integer.
2. Here you need the memoryless property of exp-distribution and distribution of the minimum of exp-random variables.
$E\left[Z_{1}\right]=4$ (3+minimum of two exp-distributed rv's, memoryless after 3!)
$E\left[Z_{2}\right]=6$ (memoryless after departure of first, $Z_{2}=Z_{1}+\exp (1 / 2)$
Grading: For full points, a complete answer with explicit logical reasoning was expected. If you only gave the correct answer and no justification, then maximum was 2 points. If memoryless property was not EXPLICITLY mentioned, then I took -1 point even if the answer was correct. Partial points were given for partly correct answers.
3. This is the $\mathrm{M} / \mathrm{M} / 1-\mathrm{PS}$ queue.
a) $\rho=\lambda / \mu=0.9$
b) using LBE's, $\pi_{n}=\rho^{n}(1-\rho)$
c) $1 \mathrm{Mbit} / \mathrm{s}($ thput $=$ mean SIZE $/$ mean delay $)$

Grading: $\mathrm{a}=\max 1$ point, $\mathrm{b}=\max 3$ points, $\mathrm{c}=\max 2$ points.
4. a) 3 servers and 1 waiting place. Thus, BD-process with states $0, \ldots, 4$, transition rate up $=\lambda$ and rate down in each state $\mu_{1}=\mu, \mu_{2}=2 \mu, \mu_{3}=3 \mu$ and $\mu_{4}=3 \mu$.
b) use LBE's to derive $\pi_{i}, i=1, \ldots, 4$
c) by PASTA probability that arriving customer waits is $\pi_{3}=3 / 49$

Grading: a) $1 \mathrm{p}, \mathrm{b}$) 3 p, c) 2 p (must mention PASTA property!). Partial points were given for partially correct solutions. Even if your BD-process was wrong but you solved the steady state distribution correctly for the wrong model, I gave some points, max 2 p .
5. a) $\phi(\mathbf{x})=1-\left(1-x_{3}\left(1-\left(1-x_{1}\right)\left(1-x_{2}\right)\right)\right)\left(1-x_{4}\right)$
b) $A_{1}=A_{2}=2 / 3, A_{3}=1, A_{4}=1 / 2$ and availability of the system $A_{s}=1-\left(1-A_{1}\right)(1-$ $\left.A_{2}\right)\left(1-A_{4}\right)=17 / 18$

Grading: a) 3p (partial points given if your solution was even close), b) availability of the components 2 p and availability of the system 1 p (minor miscalculations in obtaining the system availability were ignored).

