Mat-1.3460 Principles of Functional Analysis

Exam, 23.5.2015

Exam time: 4 hours

Calculators are not allowed

1. Consider the normed space

 $c_0 = \{x = (\xi_j)_{j \in \mathbb{N}} : \xi_j \in \mathbb{C} \text{ for all } j \in \mathbb{N} \text{ and } \exists N \in \mathbb{N} \text{ so that } \xi_j = 0, \ j \ge N \}$

with norm $||x|| = \sup_{j} |\xi_{j}|$. Define the operator $T: c_{0} \to c_{0}$ so that

$$(Tx)_j = \frac{1}{j!}\xi_j$$

for all $j \in \mathbb{N}$.

- (a) Show that T^{-1} is a well-defined linear operator $c_0 \to c_0$.
- (b) Prove that T is bounded, whereas T^{-1} is not.
- (c) Formulate the Open Mapping Theorem. Compare the assumptions and conclusions of the theorem to the situation of this problem.
- 2. Let X be a Banach space.
 - (a) Give the definition of a compact set $K \subset X$.
 - (b) Give the definition of a compact operator $T: X \to X$.
 - (c) Show that the Hilbert cube

$$\mathcal{M} = \{ x = (\xi_1, \xi_2, \dots) : |\xi_k| \le 2^{-k}, k \in \mathbb{N} \}$$

is a compact set in $\ell^2(\mathbb{N})$.

3. In $\ell^2(\mathbb{N})$ we define the shift operators S and S^* by

$$Sx = (0, \xi_1, \xi_2, \ldots),$$

 $S^*x = (\xi_2, \xi_3, \ldots),$

where $x = (\xi_1, \xi_2, \ldots)$. Show that

- (a) $\sigma_p(S) = \emptyset$ and $\sigma_p(S^*) = \{\lambda \in \mathbb{C} : |\lambda| < 1\} =: \mathbb{D}$,
- (b) $\sigma(S) = \sigma(S^*) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\},\$
- (c) $\partial \mathbb{D} \subset \sigma_a(S)$, $\partial \mathbb{D} \subset \sigma_a(S^*)$ and determine the corresponding approximate eigenvectors.

Please turn over

4. Define on $\ell^2(\mathbb{N})$ the mapping $P_n:(\xi_k)\mapsto (\eta_k)$ such that

$$\eta_k = \begin{cases} \xi_k, & k \le n \\ 0, & k > n. \end{cases}$$

- (a) Show that P_n is a bounded projection.
- (b) Does the sequence (P_n) converge weakly, strongly or in operator norm, and if so, what is the corresponding limit operator?
- 5. Recall the Zorn's lemma: Let $\mathcal{M} \neq \emptyset$ be a set with a partial ordering \leqslant . If every fully ordered subset has an upper bound, then \mathcal{M} has a maximal element m. Explain how this lemma has been used in the course.