

PHYS-E0413 Theoretical Mechanics, Autumn 2015, Midterm exam 2.

- 1. Explain the key concepts of mathematically describing fluid flow (not the full derivation of the Navier-Stokes equation).
- 2. Bernoulli's theorem:
 - (a) Starting from the Euler's equation,

$$\frac{\partial}{\partial t}\vec{v} + (\vec{v}\cdot\nabla)\vec{v} = -\frac{1}{\rho}\nabla p + \vec{f},$$

using the vector identity

$$(\vec{v} \cdot \nabla)\vec{v} \equiv \nabla(\frac{1}{2}v^2) - [\vec{v} \times (\nabla \times \vec{v})],$$

derive Bernoulli's theorem.

- (b) Give an example of its application.
- 3. A fluid flows in a long pipe with a circular cross section of radius a. Assume that the flow is laminar, stationary, and incompressible and that there are no volumetric forces present. The pressure at z=0 is p_1 and at z=L the pressure is p_2 . The density of the fluid is ρ and the kinematic viscosity ν .

- (a) Solve for the pressure field p and the velocity field v of the fluid.
- (b) Calculate the drag force the fluid exerts on the wall of the cylinder for $0 \le z \le L$.
- (c) Calculate the mass flow rate through the pipe.
- 4. Give an example of a strain tensor for which there is
 - (a) an increase in volume.
 - (b) extension in the z-direction, but overall decrease in volume.
 - (c) shear strain, but no volume change.

For the strain tensor of (a) write down the corresponding stress tensor for an isotropic solid given the Lamé coefficients μ and λ .