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1. Write about the terms below in the context of the oourse! e.g. what is in
common and what are the dilferences. Use full aen.tences m your answer. 

(a) supervis,d learning-unsupervised lea.ming (2 points)
(b) validation data-testi�ata (2 points)
(c) estimation. b�as-estimation VQiance (2 points)

2. Consider a probabilistic model for parametric regression, a prior distribu­
tion over the parameters, and a training set. 

(a) Show that the optimal predictions for new data are given by an in­
tegral over the pooterior distribution of parameters ( Give the deriva­
tion). (2 points) 

(b) How can one approximate the integral in the case that we cannot solve
the integral analytically? Show the co�nection of the approximate 
method to the optimal predictions. (1 point) 

(c) \Vhat are the advantage(s) and disadvantage(s) of the above approx­
imate method? (1 point) 

(d) Gi"e definitions of two estimation methods for parametric models.
(2 points) 

3. Principal Component Analysis (PCA)

(a) Do the PCA learning using the 2-dimensional data set in the table
below. Describe the steps of your solution. (4 points) 

{b) C�m�ute the proportion of variance (PoV) explained by the firstprmetpal component. ( 1 point) 
(c) �nd the reconstruction x of point x = (3.0 2.0]T with the first prin­cipal component. (1 point) 
t xt

I xt 
1 2.0 1.0 
2 1.0 7.0
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5. Combining classifiers

(a) Describe the rationale of combining multiple base cl888ifiers. (1
point)

(b) What is an important requirement of the base cl888ifiers? (1 point)
(c) Give at least four ways to generate the base cl888ifiers that satisfy

th e above requirement. (2 points)
(d) Describe the voting scheme for combining classifiers. (1 point)
( e) How is the voting scheme connected to the Bayesian framework? (1

point)
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

28 October 2011. 

To pass the course you must also pass the term project. Results of this exami­
nation are valid for one year after the examination date. 

This examination has five problems in two pages. Each problem is worth 6 
points. Please write clearly and leave a wide left or right margin. You can have 
a calculator, with memory erased. No other extra material is allowed. 

You can keep this paper. 

1. Write about the terms below in the context of the course, e.g. what is
in common and what are the differences. Use full sentences and give
examples.

(a) generative learning-discriminative learning (2 points)

(b) parametric methods-nonparametric methods (2 points)

( c) classification-clustering (2 points)

2. Consider a Bayesian network that has three binary variables M (trip to
Mexico), S (swine flu), and F (fever). The joint distribution is P(M, S, F) =
P(M)P(S I M)P(F I S) and the parameters are: P(M = 1) = 0.05,
P(S = 1 IM= 0) = 0.01, P(S = 11 M = 1) = 0.05, P(F = 1 IS= O) =
O.Ql, and P(F = 1 I S = 1) = 0.9.

(a) Draw the graphical representation of the Bayesian network. (3 points)

(b) Compute P(M = 1 I F = 1), that is, the probability that one has
been to .tvlexico if we know that she have fever. (3 points)

3. Consider a parametric regression problem

(a) Write a pseudocode function to choose a regression model among
A11, M2, . . .  , M8 and its parameters e given a data set of 1000 sam­
ples {xt , rt }i�1°. You should implement 10-fold cross validation for
model selection in your function. You can use abstract auxiliary func­
tions such as one for estimating parameters, but you should describe
each with one sentence and carefully list each function's inputs and
outputs. (5 points)

(b) Mention one advantage and one disadvantage of 10-fold cross valida­
tion when compared to basic validation. (1 point)

4. Assume that your data X is N d-climensional real vectors, that is, X =
{xt }�1 , xt E JRd . Consider the problem of reducing the dimensionality
of your data to k dimensions, where k < d, using principal component
analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa­
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.) (4
points)

I . 1 



(b) What is the objective of PCA? (1 point)

(c) What is the relationship between the objective and the eigenvalues?
(1 point)

5. Do three iterations of the Lloyd's algorithm for K-means clustering on the
2-dimensional data below. Use I( = 2 clusters and the initial prototype
vectors (=mean vectors) m1 = (0.0, 2.0) and m2 = (2.0, 0.0). Write down
calculation procedure and the cluster memberships as well as mean vectors
after each iteration. Draw the data points, cluster means and cluster
boundary after each iteration. (6 points)

t x
t 

1 (0.0,1.0) 
2 (1.0,2.0) 
3 ( 4.0,5.0) 
4 (5.0,3.0) 
5 (5.0,4.0) 
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

14 December 2010. 

To pass the course you must also pass the prerequisite test and the term project. 
Results of this examination are valid for one year after the examination date. 

This examination has five problems each worth 6 points, and two pages. You 
can answer in Finnish, Swedish, or English. Please write clearly and leave a 
wide left or right margin. You can have a calculator, with memory erased. No 
other extra material is allowed. 

The results will be announced in Noppa on 14 January, at latest. 

You can keep this paper. 

1. Write about the terms below in the context of the course, e.g. what is
in common and what are the differences. Use full sentences and give
examples.

(a) hypothesis space-version space (2 points)

(b) generative learning-discriminative learning (2 points)

(c) parametric methods-nonparametric methods (2 points)

2. Consider a classification of real-valued numbers x E IR into two classes
C E {l, 2} using a model with p(x I C) = N(C, 1) and P(C = 1) = 2/3.
The utility of a correct classification is zero, classifying a sample with class
1 into class 2 has utility -2, and class 2 into class 1 has utility -4. There is
also a "don't know" option whose utility is -1 regardless of the true class.
What is the optimal decision for each x? (Hint: If you are not sure about
your answer, it is a good idea to draw a figure.)

3. Consider the feature selection in a nonparametric classification problem.

(a) What is feature selection and why is it useful (at least two reasons)?
(1.5 points)

(b) Explain, also using pseudocode, how you would implement forward
and backward selection of features in a real world application. (3
points)

( c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(1.5 points)
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Figure 1: Toy data set for problem 5. 

4. Consider the problem of clustering N real valued data vectors into k clus­
ters using the Lloyd's algorithm, also known as the k-means algorithm.

(a) Write down the Lloyd's algorithm in pseudocode. Pay attention to
clearly marking the inputs and outputs of each function. Include an
initialization in your algorithm. (4.5 points)

(b) What can you say about the convergence and solutions found by the
Lloyd's algorithm? How could you take this into account in practical
data analysis? (1.5 point)

5. Regression trees.

(a) Describe the ID3 algorithm for regression trees by using pseudocode.
What is the cost function that the algorithm is optimizing? (3 points)

(b) Explain pruning in this context. Why and when is the pruning nec­
essary? (1.5 point)

(c) Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (regression task of predicting y given x). (1.5 points)
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T-61.3050 MACHfNE LEARNlNG:BASlC PIUNCIPLES, EXAMINATION

15 December 2009. 

To pass the course you must also pass the term project. Results of thi.s e.,ami­
nation are va)td fol' one year after the ex-i\lnination date. 

This exarniIHttion has five prohle1n$ and t�vo pages. You can ans\ver in Finnisft, 
Swedish or Engli�h. Ple.ise write clearlx·and leave a wide left or right margin.
You ca1) have a calculat.or, with ·memory erased. No other e.xtra material is 
allowed. 

An import.ant grading criterion is understandability: in addition to being com­
plete and correct, your answer sl1ouid be understandable to your fellow �i.u.dent 
who has the necessary prerequisite knowledge but has not yet taken the co11rse. 

The results will be announced in Noppa on 15 Jimu;,ry 2009, at latest. 

You can keep this paper. 

I. Write a couple of sentences about the tei·ms below in the context of the
course, e.g. what is ii1 common and what ,u·e the differences.

(a) supe(vised le,m1ing-unsuperviscd leaming

(b) feature extraction-feature selection

(c} generative le<1rning-discriminaiive learning

(d) A�ike Information Criterion (AIC)-Baycsian Tnformation Criterion
(BIC)

(c) classification-clustering

(f) validation data-te.5ting data

2. (a) Consider a regression problem, where you ar� trying to preaict r

based on x using some regressor 9( x ). Tiu\ expected gel).eralization 
error at xis E[(r -g(x))2 I xJ ove1· the joint disi.ribution of unseen,. 
and .x. The error can be divided into different parts. Name and give 
a,i example of three conceptually different so11rccs of enor. What 
can you do to minimize e.acl, type of enor? 

(b) Consider the Bayesian network and the data set in Figure l. Write
the joint distribution P(A, B) and compute the maximun1 likelihood
estimates of the model parameters.

t A' B' 

1 0 1 

0--® 2 0 0 
3 I 0 
4 1 0 
5 0 1 

Fig1Jre 1: The data set and the Bayesian network structnre for Problem 2 (b ). 
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3. Bayesiar, vrobability theory. Conside1· the problem of finding the probabil­
ity that a coin llip gives "hc,id.s" given a set· of observed coin flips {assume
that the probability of "heads" or "tails" can also be something else than
{ of a fair coin).

(a) Demou.5tr�te two different J>rior probability densities for thl.s prob­
lem, coin pa.re them n.nd w,plain their interpretation.

{b) Describe (using releviint concepts) ho"' you could find the probability 
of getting "b.eads" after observlog N coin flips for various cboice.5 of 
v.rior probability density. Write down the essential formulae.

(c) De6ne the maximum likelihood {ML) estimate, the maximum a pos­
teriori {MAI;') estimate and the Bayes estiniate and compare their
properties.

4. Bayesian m1dtivariate classifica.tion. Considet the probiem of classifying
real vectors into two classes using a Bayesian classi6er with cl� densities
taken to be multivariate normal distributions, given the training data
X = {(,·',x'.)}{:1 , where,.,€ {O, I} and x' E ]Rd. 

(a) ·write down the likelihoo<l functioi1.
(b) Ho,v ca11 you tune the complexity of your model?
(c) Wl1at is Naive Bayes·assumption? Derive the disctlmiuant function

for Naive Bayes das-sifier.

5. Principal component an.aiysis. Assume that your data X is Nd-dimensional
rca) vectors, that is, X = {x')� 1 , x' E.Rd . Consider the problem of re­
ducillg the dimensionality of your data to k dimensions, where k < d,

using principal component analysis (PCA).

(a) Write down in pscudocode how you could find the PCA reptesenta­
tiou of the data in k dimensions. {Hint: it is prohably easiest t.o use
matrix rcpresentatioJ1 hete. You can assttme that you have access to
a function that gives eigenvectors an.d e_igenvalues of a matrix.)

(b) How can you reconstruct the data vectors from the principal compo­
nen�s? Give .an equation.

(c) How can you choose k? List s6me methods.

2 



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

30 October 2009. 

To pass the course you must also pass the term project. Results of this exami­
nation are valid for one year after the examination date. 

This examination has five problems and two pages. You can answer in Finnish, 
Swedish or English. Please write clearly and leave a wide left or right margin. 
You can have a calculator, with memory erased. No other extra material is 
allowed. 

An important grading criterion is understandability: in addition to being com­
plete and correct, your answer should be understandable to your fellow student 
who has the necessary prerequisite knowledge but has not yet taken the course. 

The results will be announced in Noppa on 30 November 2009, at latest. 

Please fill the course feedback form ( open until 6 November 2009) at 
http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute-en.html. 

You can keep this paper. 

1. Write a couple of sentences about the terms below in the context of the
course, e.g. what is in common and what are the differences.

• hypothesis space-version space
• overfitting-underfitting
• probability-probability density
• feature selection-feature extraction
• generative learning-discriminative learning
• parametric methods-nonparametric methods

2. Consider the problem of linear regression using least squares estimates,
given a data set of X = {(rt,xt)}i1, where rt E IR is the output (variate)
to be predicted and xt E IR is the input (covariate).

• Write the model equation rt � g(xt I 8) = . . .  and the error function
E(8 J X) to be minimized.

• Give the solution of the parameters 8 either as mathematical equa­
tions or as pseudocode. (If you have memorized the solution, explain
with a few words how you could have derived it.)

• Is it possible solve polynomial regression with linear algebra? Why?

1 
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3. Consider a Bayesian network that has three binary variables M ( trip to
Mexico), S (swine flu), and F (fever). The joint distribution is P(M, S,F) =
P(M)P(S I M)P(F I M) and the parameters are: P(M = 1) = 0.05,
P(S = 1 I M = 0) = 0.01, P(S = 1 I M = 1) = 0.05, P(F = 1 I S = 0) =
0.01, and P(F = 1 I S = 1) = 0.9.

• Draw the graphical representation of the Bayesian network.

• Compute P(M = 1 I F = 1), that is, the probability that one has
been to Mexico if we know that she have fever.

4. Consider principal component analysis (PCA) for the 2-dimensional data
below.

5. 

• Find the direction of maximal variance ( or the first eigenvector).
Describe the steps of your solution.

• Compute the proportion of variance explained by the first principal
component.

Hint: Finding the eigenvectors and eigenvalues of a diagonal matrix is 
easy, but if you cannot find them, you can solve the rest of the problem 
in pseudocode style. 

t Xi xt 
1 0.0 0.0 
2 2.0 0.0 
3 1.0 3.0 

Clustering_ 

• Run E, M, and E steps of the Lloyd's algorithm for k-means clus­
tering on the I-dimensional data below. Use k = 2 clusters and the
initial prototype vectors ( =reference vectors) m1 = 0.0 and m2 = 1.0.
Explain the steps.

• Fit a mixture of Gaussians by taking one M-step, using the cluster
assignments from your k-means clustering solution. Remember to
estimate the parameters describing both P( Gt) and p(xt I Gt), where
Gt are the cluster assignments. Hint: You can think of the cluster
assignments Gt as classes, so that the problem becomes equivalent
to estimating the parameters of a parametric classifier.

t xt 

1 0.0 
2 1.0 
3 3.0 
4 4.0 
5 5.0 
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T-61.30.50 MACl{INE LEARNING: BASIC PlUNCIPLES, EXAMINA1'lON

2 September 2009 at 9-12. 

'ro pass the cour.sc you must also pass Lhe term project. Reslilts of this exami­
nation al'e '<alid for one year after the examination date. 

1<J get full points you must choose and complete five of the six problems. 
Only t.he first _five ,'tiswel's read by the cx!l.mincr will be graded. 

This exarnfoation bas six problems ( of which you must choose five) and two 
r,ages. You can answer in J,'in.nish, Swedish or English. Please write clearly 
and leave a wide left or right mal'gin. You can b!l.ve a calculator, with memory 
c.rased. No other extr!l. material is allowed.

An important grading criterion is understamfobility: in addition to heing com­
plete and corr ect, your answer should be understandable to your fellow student 
who has the necessary prerequisite knowledge but has not yet taken the course. 

The rC$ults will be ann(l�nced in Noppa on 2- October 2008, at latest. 

You can keep this paper. 

1. Model selecbio11. Assume that you have at your disposal a. training data
set X = {(r',x')}/t1 , where,., E IR is a real number and x' E Rd is a
covariate vector of d re.al variables. ConSider the problem o.f const,'ucting
,, regl'essor g{x) to 111jproximate ,. for data vectors x that do not l\PPCl\1'
in the training dat� ..

(a.) Explain concepts uinduct.ive-9iasr., t<underf-ittingn, <'ovcrfittingn , 1'hy­
poth�.sis .space" and "generalir,ation" and their relation ilt the frame­
work of this problem. 

(b) Give exa.mples of realistic �·pothesis space.5 for this problem.

(c) How could }'O.tl estimate the pr�dictio1i error (or .Y"t uns,:en data?

(d) Generally in supervised learning: explain how the prediction error
on tr!l.ining data irnd yet llnseen dl!ta is related?

i. Bayesian p1·obq,bility t/teory. Consider the problem of 6n,;ling the prohab.il­
ity that a coin flip gives "hcnds" given a �et. of observed coin flips (assume
that the probabimy of "heads" or "tails" can also be something else than
4 of a fair coin).

(a) Dcmon�tratc at l<iast two prior firobability densities for this problem,
compar� them and explain tl,eir. inter1:retation.

(b) Describe (using relevant concepts) how you could find the probability
of getting "heads" after observing N coin ·flips for variovs choices of
p,l'ior probability density. Write down the essential formulae.

(c) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates and compare their propert.ies.

3. Buis and variance of tm estimator.

,. 1 



(a) Define hias and vru-iance of an est,imator.
(b) W!111t is wibiased estimator?
(c) Compute the bias of an estimator of variance, given by s2 = I:;;., (x' - m)2 

/N,

where m. = �t:
1 

x'/N, where t.hc data i s .given by N real numbers
x

1
, tE {1, ... ,N}. 

4. Principal cmnpone11t anqlysis. Assume that your data Xis N d-din'lensioMl
real vectors, that is, X = { x1 }f�1 , x' E Rd. Consider the problem of re­
ducing the dimensionality of your data, to k dimeirsions, where k < ij,

using principal �ompontj1t analysis (PCA).
(1,) Write down in pseudo�'Ode how you could fiwl the PCA representa­

tjon of the da.t.a in k dimensions. (Hint: it is probably easiest to use 
matrix representation here. You can assurr,e that. you have access to 
a function that gives. cigenvect.ors and eigenvalues of a matrix.) 

(b) How can you interpret the PCA dimf.nsion reduction geomehically7
( c} How can you choose k? List some methods.

5. Feature selectw11. CQnsider the feature selection in regression problems.

(a) What is feature sclcc:tlon and why it is needed?'
(b) Assume that you havo a regrcssi.011 problem (for example, such as

in Problem 1). Explain, also using pseudocop.e, how Y/JU would im­
plement fo,ward and backward selection of features in a real world
applicatlcm.

(c) What can you say about time complexity. and the opti'mality of the
solutions produced by the forward and backward selection methods?

6. Classificfltion trees.

( a) What is classrfica.tion tree? Define it.
(b) Oc$Cribc the ID3 algorithm. What else do you need to take into

account ,vhen construct:ing a classification tr(..>e usjng a rcn.1 \\'Or1d
data?

( c) Sketch the rtmning of the ID3. algorithm with a toy dat� set of Figure
1 (binary dassification task in.lR2).

y 

- +

+ 

+ -

+ 

+ + 

+ 

Figure 1: Toy data set for problem 6. 
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

C, 31 October 2008 at 13-16. 

You must have passed the term project 2007 or part 1 of the term project 2008 
to participate to this examination. 

To pass the course you must also pass the term project. Results of this exami­
nation are valid for one year after the examination date. 

To get full points you must choose and complete five of the six problems. 
Only the first five answers read by the examiner will be graded. 

This examination has six problems ( of which you must choose five) and three 
pages. You can answer in Finnish, Swedish or English. Please write clearly 
and leave a wide left or right margin. You can have a calculator, with memory 
erased. No other extra material is allowed. 

An important grading criterion is understandability: in addition to being com­
plete and correct, your answer should be understandable to your fellow student 
who has the necessary prerequisite knowledge but has not yet taken the course. 

The results will be announced in Noppa on 1 December 2008, at latest. No 
other announcements will be sent. 

Please fill the course feedback form (open until 9 November 2008) at http:// 
tieto.tkk.fi/Opinnot/kurssipalaute.html (in Finnish) or at http://www. 
tkk. f i/Uni ts/CSE/Studies/feedback. html (in English). 

You can keep this paper. 

1. Model selection. Assume that you have at your disposal a training data
set X = {(rt ,xt )}f:,1, where rt E JR is a real number and xt E ]Rd is a
covariate vector of d real variables. Consider the problem of constructing
a regressor g(x) to approximate r for data vectors x that do not appear
in the training data.

(a) Explain concepts "inductive bias", "underfitting", "overfitting", "hy­
pothesis space" and "generalization" and their relation in the frame­
work of this problem.

(b) Give examples of realistic hypothesis spaces for this problem.

(c) How could you estimate the prediction error for yet unseen data?

( d) Generally in supervised learning: explain how the prediction error
on training data and yet unseen data is related?

2. Bayesian networks.

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(x4 I x1,x2,x3), given the net­
work in Figure 1. You can assume that B, x1, x2, x3 and x4 are
discrete random variables.

1 



Figure 1: Bayesian network for problem 2. 

(c) If Xi, i E {1, ... ,4}, are observations and () are parameters of a
probabilistic model that has been assumed to have generated the
observations then what is P(B I x1, x2, x3, x4) commonly called?

3. Bayesian probability theory. Consider the problem of finding mean of N
real numbers, X = { xt 

H�1 where xt E R

(a) Define a feasible probabilistic model for this problem that has a mean
as a sole parameter.

(b) Define a feasible prior probability density for your problem and use
it to derive an expression for posterior probability density.

(c) Use your results to derive maximum likelihood (ML) and maximum
a posteriori (MAP) estimates for the mean.

4. Bayesian multivariate classification. Consider the problem of classifying
real vectors into two classes using Bayesian classifiers with class densities
taken to be multivariate normal distributions, given the training data
X = {(rt,xt)}f:,1, where rt E {0,1} and xt E Rd . 

(a) Write down the likelihood function.

(b) How can you tune the complexity of your model?

(c) What is Naive Bayes assumption? Derive the discriminant function
for Naive Bayes classifier.

5. Principal component analysis. Assume that your data X is N cl-dimensional
real vectors, that is, X = {xt}f:1, xt E JRd . Consider the problem of re­
ducing the dimensionality of your data to k dimensions, where k < d,
using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa­
tion of the data ink dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k? List some methods.

6. Decision trees.

(a) What is a decision tree? Define it.

2 
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Figure 2: Toy data set for problem 6. 

(b) Describe the ID3 algorithm by using pseudocode. Explain pruning
in this context. Why and when is the pruning necessary?

( c) Sketch the running of the ID3 algorithm with a toy data set of Figure
2 (regression task of predicting y given x). What is the cost function
that the algorithm is optimizing?

3 



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

C, 31 October 2008 at 13-16. 

You must have passed the term project 2007 or part 1 of the term project 2008 
to participate to this examination. 

To pass the course you must also pass the term project. Results of this exami­
nation are valid for one year after the examination date. 

To get full points you must choose and complete five of the six problems. 
Only the first five answers read by the examiner will be graded. 

This examination has six problems (of which you must choose five) and three 
pages. You can answer in Finnish, Swedish or English. Please write clearly 
and leave a wide left or right margin. You can have a calculator, with memory 
erased. No other extra material is allowed. 

An important grading criterion is understandability: in addition to being com­
plete and correct, your answer should be understandable to your fellow student 
who has the necessary prerequisite knowledge but has not yet taken the course. 

The results will be announced in Noppa on 1 December 2008, at latest. No 
other announcements will be sent. 

Please fill the course feedback form ( open until 9 November 2008) at http: I I

tieto. tkk. fi/Opinnot/kurssipalaute .html (in Finnish) or at http://www. 
tkk. fi/Uni ts/CSE/Studies/feedback. html (in English). 

You can keep this paper. 

1. Model selection. Assume that you have at your disposal a training data
set X = {(rt,xt)}�1, where rt E JR is a real number and xt E !Rd is a
covariate vector of d real variables. Consider the problem of constructing
a regressor g(x) to approximate r for data vectors x that do not appear
in the training data.

(a) Explain concepts "inductive bias", "underfitting", "overfitting", "hy­
pothesis space" and "generalization" and their relation in the frame­
work of this problem.

(b) Give examples of realistic hypothesis spaces for this problem.

( c) How could you estimate the prediction error for yet unseen data?

( d) Generally in supervised learning: explain how the prediction error
on training data and yet unseen data is related?

2. Bayesian networks.

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(x4 I x1, x2, x3), given the net­
work in Figure 1. You can assume that B, x1, x2, xa and X4 are
discrete random variables.

1 



Figure 1: Bayesian network for problem 2. 

( c) If xi, i E { 1, ... , 4}, are observations and (} are parameters of a
probabilistic model that has been assumed to have generated the
observations then what is P(O I x1, x2, x3, x4) commonly called?

3. Bayesian probability theory. Consider the problem of finding mean of N
real numbers, X = {xt}f:1 

where xt E IR.

(a) Define a feasible probabilistic model for this problem that has a mean
as a sole parameter.

(b) Define a feasible prior probability density for your problem and use
it to derive an expression for posterior probability density.

(c) Use your results to derive maximum likelihood (ML) and maximum
a posteriori (MAP) estimates for the mean.

4. Bayesian multivariate classification. Consider the problem of classifying
real vectors into two classes using Bayesian classifiers with class densities
taken to be multivariate normal distributions, given the training data
X = {(rt,xt)}f:1, where rt E {0,1} and xt E !Rd . 

(a) Write down the likelihood function.

(b) How can you tune the complexity of your model?

(c) What is Naive Bayes assumption? Derive the discriminant function
for Naive Bayes classifier.

5. Principal component analysis. Assume that your data X is N d-dimensional
real vectors, that is, X = {xt}f:1, xt E !Rd . Consider the problem of re­
ducing the dirrumsionality of your data to k dimensions, where k < d,

using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa­
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k? List some methods.

6. Decision trees.

(a) What is a decision tree? Define it.
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Figure 2: Toy data set for problem 6. 

(b) Describe the ID3 algorithm by using pseudocode. Explain pruning
in this context. Why and when is the pruning necessary?

( c) Sketch the running of the ID3 algorithm with a toy data set of Figure
2 (regression task of predicting y given x). What is the cost function
that the algorithm is optimizing?

3 
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Pl'oblmn 0: l'l'luclpal Component Anslyal3 (1 O points tQt!ll). 

You h11vo A. tt111,M0t ,,f N lwo-dh,1c:nRIOHOI poinl,8 y'. You Wtll)I I<) perform Pri)1d1,al C(Jmp,1ne1,1, A •vdy$h 
(!>CA) on l,ho dMri�ct. You ba,ve ah,>11<1.1• ,,stirna1cd th�t the d1,111 )ij :ooro-mc�n and hru, the rovnd,n1,;,, 
ll1�1t'iX 

Perform 1.h,• following tasks: 

S = [ lO 6 ]6 Jo 

[ 1/./2 -1/,/21 [ 16 0] 
C= 1/..fJ. 1/,./i n.nd D� 0 •l .
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.,...rt)�c)mput<> thq pmp,)1 l,IOJt Of variance �xplhlr 1e<.I by lhtt first prindpnl co11111011ont, (2 points) 

d} D�lhw th<i principal co1111J<Juont� Qf the dill.� 11.v ,/ c:ry1. Whal Is the tovorionce matrix of zi·r (!i
�int�}. 



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

3 September 2008 at 9-12. 

To pass the course you must also pass the term project. Results of this exami­
nation are valid for one year after the examination date. 

To get full points you must choose and complete five of the six problems. 
Only the first five answers read by the examiner will be graded. 

This examination has six problems (of which you must choose five) and two 
pages. You can answer in Finnish, Swedish or English. Please write clearly 
and leave a wide left or right margin. You can have a calculator, with memory 
erased. No other extra material is allowed. 

An important grading criterion is understandability: in addition to being com­
plete and correct, your answer should be understandable to your fellow student 
who has the necessary prerequisite knowledge but has not yet taken the course. 

The results will be announced in Noppa on 3 October 2008, at latest. No other 
announcements will be sent. 

You can keep this paper. 

1. Model selection. Assume that you have at your disposal a training data
set X = {(rt , xt)}�1, where rt E {O, l} is a binary class and xt E Rk is a
covariate vector of k real variables. Consider the problem of constructing
a predictor or classifier h(x) for the class r for data vectors x that do not
appear in the training data.

(a) Explain concepts "inductive bias", "underfitting", "overfitting", "hy­
pothesis space" and "generalization" and their relation in the frame­
work of this problem.

(b) Give an example of a realistic hypothesis space for this problem.

( c) How could you estimate the prediction error for yet unseen data?

2. Bayesian probability theory. Consider the problem of finding the probabil­
ity that a coin flip gives "heads" given a set of observed coin flips (assume
that the probability of "heads" or "tails" can also be something else than
-! of a fair coin).

(a) Demonstrate at least two prior probability densities for this problem,
compare them and explain their interpretation.

(b) Describe (using relevant concepts) how you could find the probability
of getting "heads" after observing N coin flips for various choices of
prior probability density. Write down the essential formulae.

( c) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates and compare their properties.

3. Regression. Consider the problem of linear regression using least squares
estimates, given a data set of X = {(rt ,xt)}�

1
, where rt E JR is the

dependent variable and xt E JRk is the covariate vector of k real variables.
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Figure 1: Toy data set for problem 5. 

(a) Define a likelihood function and use it to derive the error function to
be maximized.

(b) Explain the difference between linear and polynomial regression.

4. Principal component analysis. Assume that your data Xis N d-dimensional
real vectors, that is, X = {xt}{�1, xt E Rd . Consider the problem of re­
ducing the dimensionality of your data to k dimensions, where k < d,

using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa­
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k? List some methods.

5. Classification trees.

(a) What is a classification tree? Define it.

(b) Describe the ID3 algorithm. What else do you need to take into
account when constructing a classification tree using a real world
data?

( c) Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (binary classification task in R2 ).

6. Logistic discrimination.

(a) Define logistic discrimination. What can it be used for?

(b) Derive the error function to be maximized in logistic discrimination.

(c) Discuss the ways of optimizing this cost function. What do you need
to take into account?

2 
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES

EXAMINATION 

B, 19 December 2007 at 16-19. 

To pass the course you must also pass the term project. Results of this 
examination are valid for one year after the examination date. 

To get full points you must choose and complete five of the six problems.

Only the first five answers read by the examiner will be graded. 

This examination has six problems ( of which you must choose five) and three 
pages. You can answer in Finnish, Swedish or English. Please write clearly 
and leave a wide left or right margin. You can have a calculator, with memory 
erased. No other extra material is allowed. 

An important grading criterion is understandability: in addition to being 
complete and correct, your answer should be understandable to your fellow 
student who has the necessary prerequisite knowledge but has not yet taken 
the course. 

The results will be posted to the (blue binder at the) notice board on 19 
January 2008, at latest, and also emailed to an address of form 
12345X©students. hut. f i, where 12345X is your student number. 

Please fill the course feedback form ( open until 7 January 2008) at 
http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute.html 

You can keep this paper. 

1. Model selection. Assume that you have at your disposal a data set
X = { (rt, xt)}!1, 

where rt is a class and xt is a covariate; and a set
of k black box classification algorithms A, i E {1, ... , k }, which try to
predict the class r, given the covariate x and the training data. More
formally, you can think Ai as a known arbitrary function rPREDICTED =
A(x, XrRAIN ), where rPREDICTED is the predicted class, given x, and
XrRAIN is the data used to train the classifier. Your task is to choose
and train the classification algorithm that would work best for yet un­
seen data. Describe, in detail, different ways how you could accomplish
this ( and why). How do you expect the various classification errors to
behave?

2. Bayesian networks.

1 
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Figure l: Bayesian network for problem 2. 

(a) Define the concept of Bayesian network.

(b) Find an expression for probability P(C IX, Y, Z), given the net­
work in Figure 1, where C, X, Y and Z are binary random vari­
ables.

(c) What is the type of a classifier defined by the item (2b) above
commonly called?

3. Bayesian probability theory. Consider the problem of finding the prob­
ability that a coin flip gives "heads" ( assume that the probability of
"heads" can also be something else than ! of a fair coin).

(a) Using the concepts of prior and po::;terior probability density, de­
scribe (using formulae and figures) how you could find this prob­
ability after observing N coin flips for various choices of prior
probability density.

(b) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates. What would ML and MAP estimates be in
your coin flipping example?

4. Bias and variance dilemma. Explain the bias and variance dilemma,
with the relevant formulae, in the context of linear regression.

5. Linear disc riminant analysis.

(a) Define the concept of linear discriminant analysis (LDA), and de­
rive the formulae for the case of two classes.

(b) What is the main difference between principal component anal­
ysis (PCA) and LDA? Demonstrate this difference by sketching

2 



out how PCA and LDA would work with a toy data set of your 
choosing. 

6. Clustering. Consider the problem of clustering N real valued data
vectors into k clusters using the Lloyd's algorithm, also known as the
k-means algorithm.

(a) Write the Lloyd's algorithm in pseudocode.

(b) What can you say about the convergence a,nd solutions found by
the Lloyd's algorithm? How could you take this into account in
practical data analysis?

3 



T -61.30,50 �1ACIUNE LEARNING: DASIC PRINCIPLES, EXAMINATION 

26 �·lay 2014. 

To pnss the cou11Je you musL also ptllls the tenn project. Results of this examination are valid for one year 
afl.cr the examination date. 

This ex11.mination has five problems each worth 10 point�, a11d Lhree pages. You must llnswer in gnglish. 
Please write clearly and leave a wide left or right margin. You can have a calculator, with memory erased. 
No other extra material is allowed 

Tho results will be 11nno1111ced In Noppl\. You can keep thls paper. 

Problo,n 1: Explnnatlons of coucepl.s (10 pohtts total) 

Explnm tht> terms below in the r.ontext of the ooursc. If two tc1·ms are given, explain them so Lhnt ls
becomes cloar whnt they hllve in  oommon and whut arc the diffcrcnce.1. Use run sentences. 

I consistent hypoth1;11i�-vcrBiun apn�'C (2 polnt.s) 

2. receiver operating clunacterlstics (ROC) curve (2 poinl.8)

3. OayP.sion mo<l11l nvernging (2 poinl.Ji)

•1. decision tl'CC (2 points)

Ii. gcncrnllzoL1on error of n d(\SSifier (2 points) 

Problo1n 2, lVJodol Scloclion (10 points lolnl) 

• Expl,.in whal is the K-fol<l Cross Validation Scheme o.nd wrilo down one ndvo.ntllge and di81\dviu1tage

of IL. (2 point.a)

• Consider a po.rnmctric regression (fle,ycslan regre8$ion) scennrio where we try Lo regress target valuca
r from one-dime11sio1111l inputs x uRing the rcgressor r "" f1(xlO) = a0 I 41% I 112.2:2, where the

parameters nrc O = (110, o1 , o2). We osaumo Gaussian noise p(rlx,0) - N{g(:i:10), cr2) wh�rc a-2 is the

noise variance which is n known constnnt.

Assume \Vil lu�ve ob�ervcd N input points :i:, and their corrcaponding lnrget.., r1• Wrl\11 down the
llkelihood function of the model. (3 point.,)

• Now suppose Lhat we will also assume a Gau.sslnn prior for the para.meters, Oo - N(O, 1/A), a, "­
N(O, 1/A), o, - N(O, 1/A), where I/A is the prior v!ll'iance of the parameters. Write down the
equation you need to maximize in order to find the maximum a posteriori (MAP) estimate of the
parameters. (3 points)

• Explain the role of tho constant ).. in the prior distribution, and how it causes regularization or the
learned parameters 0. (2 points)



Problem 5: NonparonuiLric Density Estimation (10 points total) 

a )  In Lhr. c<>nLCxL of 1>1obnu1hLy dcn�1Ly e.t11nlilion. explam Lhc 11n1vo �umnl<>r Rnd gwi- il.s mnthcmaticru 
deli111L1on. (2 point.a) 

b) In the context of dc1111ILy cstnnalion, cxplnm Lho kcrn�J ,..timaLo1· and give it, mn1J1cnuu.ical dPliniLion.
(2 points)

c) You have oblll!rVed seven onM!imensionnl d!ll.a poinl.s whose ooordinntn nre �huwn III Llw figure below.
Use the naive csLimaLor wolh bm width /1 = .1 to �Lnnnt.e the prol,nblliLy de,wty nvcJ' the mterval
(-G, OJ Draw th,:, dcnsiLy function (3 points)

d) Usrng the S1>111e naive eatimaLor aa in pllTL c), give Lhe 11u111ur1c.AI value of the prohahlliLy deusily nt Lhe
locations -1.2:i, -0.75, and 1.5. (3 pom1..,)

A B C D E F G 

�-----+-a-+�-·m-l--•-+�-·----+-ll+f-l-i-+---+-t-l-1-�� 
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

Figure l: Oh�crvcxl dol.n poinlli fo, problem 5 d). Por co11vr.111r11ce th1• datu 1>0l11u. 11re h1bclcd A-G. 



T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

25 October 2013. 

To pass the course you must also pass the term project. Results of this examination are valid for one year 
after the examination date. 

This examination has five problems each worth 10 points, and two pages. You must answer in English. 
Please write clearly and leave a wide left or right margin. You can have a calculator, with memory erased. 
No other extra material is allowed. 

The results will be announced in Noppa. You can keep this paper. 

Problem 1: Explanations of concepts (10 points total) 

Explain the terms below in the context of the course. If two terms are given, explain them so that is 
becomes clear what they have in common and what are the differences. Use full sentences. 

1. consistent hypothesis-version space (2 points)

2. overfitting-underfitting (2 points)

3. histogram estimator-naive estimator, in context of density estimation (2 points)

4. expected utility in classification (2 points)

5. k-fold cross-validation (2 points)

Problem 2: Bayesian Decision Theory and Parametric Methods (10 points). 

a) Consider X1, X2, . . .  , Xn are i.i.d. observations from a model P(XIB) with unknown parameter B. If
you want to estimate B following Bayes Theorem, answer the following first:

• What do the concepts prior, likelihood and posterior mean in the above problem? Write with
mathematical notation. You do not have to define specific functions for the prior, likelihood, and
posterior, just explain what the concepts are. (2 points)

• How can you compute the posterior if you know the prior and likelihood? (2 points)

• If you know the posterior density of B, how can you compute the Bayes estimate of B? You do
not have to perform the computation, just explain how it would be done. (2 points)

b) Suppose in a), the observations X1 , X2 , . . .  , Xn are light bulbs where each bulb Xi is either working
(Xi = 0) or broken (Xi = 1), and we have observed n = 10000 bulbs. We assume the model P(XIO)
is a Bernoulli process, where the parameter B, 0 < B < 1, is the probability for a bulb being broken.
Then answer the following:

• We want to use a flat prior (also known as a uniform prior) for B. Write the equation of the prior.
(1 point)

• Write the expression of the posterior density of B. (3 points)

Problem 3: Clustering (10 points). 

• Give one example of Hard and Fuzzy Clustering (also called Soft Clustering). Explain the differences
between these two types of clustering. (2 points)

• Suppose you are performing an iteration of K-means clustering, and you know the set of K cluster
means mi. What would be the error function that you need to minimize to assign observations to
the clusters? (2 points)

• Write the Lloyd's algorithm in pseudocode. (4 points)

• Does the solution of K-means depend on the initial location of the cluster means? If yes, how can
you try to get better solutions? If not, why not? (2 points)



Problem 4: Principal Component Analysis (10 points total) 

You have a data set of the following five two-dimensional points: 

You want to reduce the dimensionality of the data points to one, using Principal Component Analysis.
You have already estimated that the data is zero-mean and has a covariance matrix of 

S=[1
6
0 

1
6
0]

and you know the covariance matrix can be diagonalized as cTsc = D where 

Perform the following tasks. 

[ 1/v'2 -1/v'2 ] [ 1 6  0 ] C = l/v'2 
l/v'2 and D = 0 4 .

a) Explain how the matrices C and Dare related to Principal Component Analysis. (1 points)
b) Reduce the dimensionality of the data to one, by computing the projections of the five data points

onto the first principal component. It is enough to do the computation for the first two data points.
(3 points) 

c) Compute the proportion of variance explained by the first principal component. (2 points)
d) Reconstruct the original data points approximately, by projecting the coordinates computed in step

a) back into the original space. It is enough to do the computation for the first two data points. (2
points) 

e) Compute the reconstruction error. If you reconstructed just the first two data points in step c), it is
acceptable to use only those two points in this step. (2 points) 

Problem 5: Nonparametric Classification (10 points). 

You have acquired the training data shown in the scatter plot below, where circles are locations of data
· points, '+' signs are data from the positive class and '-' signs are data from the negative class. You also
have three validation points marked as 1, 2, and 3 in the scatter plot. You know that validation point 1
comes from the positive class and validation points 2 and 3 come from the negative class. 

a) Explain the principle of k-nearest neighbor classification. Write the necessary equations for the case
k = 1. (3 points) 

b) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 1. (2 points) 

c) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 5. (3 points) 

d) Compute the classification errors on the validation set, and choose the best complexity for the classifier
( choose k = 1 or k = 5). (2 points) 
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

25 October 2013. 

To pass the course you must also pass the term project. Results of this examination are valid for one year 
after the examination date. 

This examination has five problems each worth 10 points, and two pages. You must answer in English. 
Please write clearly and leave a wide left or right margin. You can have a calculator, with memory erased. 
No other extra material is allowed. 

The results will be announced in Noppa. You can keep this paper. 

Problem 1: Explanations of concepts (10 points total) 

Explain the terms below in the context of the course. If two terms are given, explain them so that is 
becomes clear what they have in common and what are the differences. Use full sentences. 

1. consistent hypothesis-version space (2 points)

2. overfitting-underfitting (2 points)

3. histogram estimator-naive estimator, in context of density estimation (2 points)

4. expected utility in classification (2 points)

5. k-fold cross-validation (2 points)

Problem 2: Bayesian Decision Theory and Parametric Methods (10 points). 

a) Consider X1, X2, ... , Xn are i.i.d. observations from a model P(XIO) with unknown parameter e. If
you want to estimate () following Bayes Theorem, answer the following first:

• What do the concepts prior, likelihood and posterior mean in the above problem? Write with
mathematical notation. You do not have to define specific functions for the prior, likelihood, and
posterior, just explain what the concepts are. (2 points)

• How can you compute the posterior if you know the prior and likelihood? (2 points)

• If you know the posterior density of(), how can you compute the Bayes estimate of()? You do
not have to perform the computation, just explain how it would be done. (2 points)

b) Suppose in a), the observations Xi, X2, ... , Xn are light bulbs where each bulb Xi is either working
(Xi = 0) or broken (X; = 1), and we have observed n = 10000 bulbs. We assume the model P(XIO)
is a Bernoulli process, where the parameter (), 0 < () < 1, is the probability for a bulb being broken.
Then answer the following:

• We want to use a flat prior (also known as a uniform prior) fore. Write the equation of the prior.
(1 point)

• Write the expression of the posterior density of e. (3 points)

Problem 3: Clustering (10 points). 

• Give one example of Hard and Fuzzy Clustering (also called Soft Clustering). Explain the differences
between these two types of clustering. (2 points)

• Suppose you are performing an iteration of K-means clustering, and you know the set of K cluster
means mi. What would be the error function that you need to minimize to assign observations to
the clusters? (2 points)

• Write the Lloyd's algorithm in pseudocode. (4 points)

• Does the solution of K-means depend on the initial location of the cluster means? If yes, how can
you try to get better solutions? If not, why not? (2 points)

1 
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Problem 4: Principal Component Analysis (10 points total) 

You have a data set of the following five two-dimensional points: 

X = { [ =� J , [ �4 J , [ � J , [ � J , [ � J }
You want to reduce the dimensionality of the data points to one, using Principal Component Analysis. 
You have already estimated that the data is zero-mean and has a covariance matrix of 

8=[
1

6
0 

1
6
0] 

and you know the covariance matrix can be diagonalized as CT SC = D where 

C = [ 1//2 -1//2 ]1//2 1//2 [ 
1 6  0 J and D = 0 4 .

Perform the following tasks. 

a) Explain how the matrices C and Dare related to Principal Component Analysis. (1 points)
b) Reduce the dimensionality of the data to one, by computing the projections of the five data points

onto the first principal component. It is enough to do the computation for the first two data points.
(3 points)

c) Compute the proportion of variance explained by the first principal component. (2 points)
d) Reconstruct the original data points approximately, by projecting the coordinates computed in step

a) back into the original space. It is enough to do the computation for the first two data points. (2
points)

e) Compute the reconstruction error. If you reconstructed just the first two data points in step c), it is
acceptable to use only those two points in this step. (2 points)

Problem 5: Nonparametric Classification (10 points). 

You have acquired the training data shown in the scatter plot below, where circles are locations of data 
· points, '+' signs are data from the positive class and '-' signs are data from the negative class. You also 
have three validation points marked as 1, 2, and 3 in the scatter plot. You know that validation point 1 
comes from the positive class and validation points 2 and 3 come from the negative class. 

a) Explain the principle of k-nearest neighbor classification. Write the necessary equations for the case
k = 1. (3 points)

b) Classify the three validation points based on the training set, using k-nearest neighbor classification
with k = 1. (2 points)

c) Classify the three validation points based on the training set, �sing k-nearest neighbor classification
with k = 5. (3 points)

d) Compute the classification errors on the validation set, and choose the best complexity for the classifier
(choose k = 1 or k = 5). (2 points)
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

27 April 2013. 

To pass the course you must also submit the term project. Results of this 
examination are valid for one year after the examination date. 

This examination has five problems ea.ch worth 10 points, and 4 pages. You have 
to answer in English. Please write clearly and leave a wide left or right margin. 
You can have a calculator, with memory erased. No other extra material is 
allowed. 

The results will be announced in Noppa on May 26, at latest. 

You can keep this paper. 

1. Multiple choices questions (IO point;;). The following five questions have
different proposer! answers. Only one of t,hem is correct.. Yon lw.vc t.o
give your answer along with your conficlcnre (''High" or ''Low") for each
answer. Grading for each of these questions is then:

• + 2 if t be ,1.11swcr is correct ,rnd couJidcnce Higl.i

• + 1. if the answer is correct and confidence Low

• 0 if the answer is missing

• -1 if the a11swer is wrong cu1d confidence Lmv

• -·- 2 if the answer is wrong and confidence High

Write on your answer sheet the correct answer A, B, C, D, ... ) along with 
the confidence you have (High or Low) for t.bat question. fr,r t'xnrnplc, 
"A, Low" is a proper way of answering a question. No need to justify your 
answers. Tota.I score for this question is between O and 10 (you cannot gel 
<1 negative score for the whole question). c. 

l) For a binary da .. -;f:;ification probk·m, each da:,;� i;; modded usiug, n :-.Jul­
tivariate Normal (Gaussian) Distribution. A Bayes classifier is calcu­
lated.

A) The boundary is always linear.
B) The boundary is nonlinear (not purely linear).
C) The boundary is independent. from the priors of the c:lasses.
D) The boundary can always separate the classes perfectly (for the

training set).
E) None of the previous answers is correct

2) For a multidimensional dataset, a Principal Component Analysis (PCA)
is performed.

A) The average reconstruction error is always increasing with the di­
mension of projection.

B) 'l'he projection is independent from the variances of the input vari­
ables.

l 



C) The average reconstruction error is never increasing with the di­
mension of projection.

D) The projection dimension has to be larger than the number of
points and the number of variables (samples).

E) None of the previous answers is correct

3) The Lloyd's algorithm is used to perform clustering.

A) This algorithm will never converge and has to be stopped after an
arbitrary number of iterations.

B) The error function which is minimized can increase for some itera­
tions but is globally decreasing.

C) The Lloyd's algorithm will always converge to the best clustering
solution.

D) The Lloyd's algorithm is dependent from the initialization.
E) None of the previous answers is correct

4) For a binary classification prolJJc,1n, ti. l{-Scarest-NeigblHJr (KNN) Clas­
sifier is built.

A) The dassifici:ltion error is always dc·cn•asing with respect t.o the
parameter K.

B) The best value for K is always :3.
C) The parameter K cannot be optimized using validation.
D) The p<•rforrnaun,s of tlw KXN ch,.ssificr aie in(kpendcnt from th<'

distance metric which is used.
E) None of the previous answers is correct

5) A k-fold cross-validation is used to determine the optimal complexity
of a regression model.

A) The cross-validation error is a perfect estimate of the generalization
performances of the regression model.

B) 

C) 
D) 

The best value for k is always 2. L 

The best value for k is always 10.
The complexity selected by the k-fold cross-validation is always
larger than the complexity selected using a Bayesian Information
Criterion (BIC) regularization.

E) None of the previous answers is correct

2. Model selection. Assume that you have at your disposal a data set X =

{ (r1
, x1 )}f�1, where r1 is a class and xt is a covariate; and a set of k black

box classifini.t.ion tilgoritlnns Ai , i E { 1, ... , k}, which try to predict the
class r, given the covariate x and the training data. More formally, you can
think Ai as a known arbitrary function rpnEDTCTED = A;(x,,l::':rnArN), 
where 'tf>RBDICTBD is the predicted class, given x, and .:><TRAIN is the
dut.n u;;cd t.u t.rnin i he cLv;sil'icr. Yo111.· 1,a,;k is t:o ch,Josc ,ind train 1.Jic clas­
sifi<'ai.ion a.lgoriil1m that. would work i>est: for .vet. uusecn dat.n.. T)escribc,
i1.1 dc1.nil, difh:rc11t· wu:vs liuw yuu could ,1ccot11pli,;J1 t.!1is (and why). How
do you expect. the v,Hinus rlassificat.ion errors t.o behave? (10 point.s)
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3. (a) Maxirnmn Likelihood (4 points). Consider a univariate data set
X = (x1

, :i:2
, . . .  , xN) that has a log-normal distribution. Find the

maximum likelihood estimates of the mean 11 and variance a2
. The

probability density function is given by 

(,
·
) 

_ �-1- (- (lnx ······ 11)2) ,,, .> O.p .t - rn= exp 2 , .,. 
x v2rra 2a 

(b) Nai:ve Baye.s (6 points). Consider binary classification for m.ultivari­
ate data X = {(r 1 ,x1)}iE{l, ... ,N}, where r1 E {O, l} and xt E !R;,d _
Assume that 

• r is Bernoulli distributed with P(r = 1) = "·
• Variable Xi, 't = 1, ... , d is continuous and normally distributed

with P(xilr = k) = N(Pik, a;). The variance af is class inde­
pendent' 

• All variables are independent of each other given the class label
r (Naive Bayes assrnoption). 

Show that the posterior dist;ribution P(r = llx) can be written in
logistic form, i.e. 

P(r = llx) = ----- - ----1 -�d·- - - . 

1 + exp(wo + Lja=l 'WjXJ) 

and write down the expressions for w0 and Wj, j = 1, ... ,d.

4. Feafare selection. CoHsidcr the fcatnrc select.ion in classificatiou probku1s.

(a) \Vhat is feature selection and why is it needed? (4 points)
(b) A.ssurue t.ltaL you have a binary classification algorithm. Explain. als,J

using pseudocode, how you would implement fon:varcl and backward
selection of features (in a real world applicat.(on). (4 points) 

(c) What can you say a.bout time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(2 points) 



5. Consider the problem of clustering N real valued data vectors into k clus­
ters using the Lloyd's algorithm, also known as the k-rneans algorithm.

(a) Write down the Lloyd's algorithm in pseudocode. Pay attention to
clearly marking the inputs and outputs of each function. Include an
initialization in your algorithm. (6 points)

(b) \Vha.t can you say about the convergence and solutions found by the
Lloyd's algorithm? How could you take this into account in practical
data analysis? (4 points)

4 
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T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION

26 October 2012. 

To pass the course you must also submit the term project. Results of this 
examination are valid for one year after the examination date. 

This examination has five problems each worth 10 points, and 4 pages. You have 
to answer in English. Please write clearly and leave a wide left or right margin. 
You can have a calculator, with memory erased. No other extra material is 
allowed. 

The results will be announced in Noppa on November 25, at latest. 

You can keep this paper. 

l. Multiple choices questions (10 points). The following five questions have
different proposed answers. Only one of them is correct. You have to
give your answer along with your confidence ( "High" or "Low") for each
answer. Grading for each of these questions is then:

• +2 if the arrnwer is correct and confidence High

• + 1 if the answer is correct and confidence Low

• 0 if the answer is missing

• -1 if the answer is wrong and confidence Low

• -2 if the answer is wrong and confidence High

Write on your answer sheet the correct answer A, B, C, D, ... ) along with 
the confidence you have (High or Low) for that question. For example, 
"A, Low" is a proper way of answering a question. No need to justify your 
answers. Total score for this question is behvecn O and 10 (you cannot get 
a negative score for the whole question). 

1) For a binary classification problem, each class is modeled using a l\fol­
tivariate Normal ( Gaussian) Distribution. A Bayes classifier is calcu­
lated.

A) The boundary is always linear.

B) The boundary is always nonlinear.

C) The boundary is independent from the priors of the classes.

D) The boundary can never separate the classes perfectly (for the
training set).

E) None of the previous answers is correct

2) For a multidimensional dataset, a Principal Component Analysis (PCA)
is performed.

A) The average reconstruction error is never increasing with the di-
mension of projection. '

B) The projection is independent from the variances of the input vari­
ables.

1 



C) The average reconstruction error is always increasing with the di­
mension of projection.

D) The projection dimension has to be larger than the number of
points and the number of variables (samples).

E) None of the previous answers is correct

3) The Lloyd's algorithm is used to perform clustering.

A) This algorithm will never converge and has to be stopped after an
arbitrary number of iterations.

B) The error function which is minimized can increase for some itera­
tions but is globally decreasing.

C) The Lloyd's algorithm will always converge to the best clustering
solution.

D) The Lloyd's algorithm is independent from the initialization.

E) None of the previous answers is correct <: -

4) For a binary classification problem, a K-Nearest-Neighbor (KNN) Clas­
sifier is built.

A) The classification error is always decreasing with respect to the
parameter K. \J

B) The best value for K is always 1.
C) The parameter K can be optimized using validation.

D) The performances of the KNN classifier are independent from the
distance metric which is used.

E) None of the previous answers is correct

5) A k-fold cross-validation is used to determine the optimal complexity
of a regression model.

A) The cross-validation error is a perfect estimate of the generalization
performances of the regression model.

B) The best value for k is always 2.
C) The best value for k is always 10.
D) The complexity selected by the k-fold cross-validation is always

larger than the complexity selected using a Bayesian Information
Criterion (BIC) regularization.

E) None of the previous answers is correct

2. Model selection. Assume that you have at your disposal a data set X =

{ (rt , xt)}{:1, where rt is a class and xt is a covariate; and a set of k black
box classification algorithms A;, i E {1, ... , k}, which try to predict the
class r, given the covariate x and the training data. More formally, you can
think A; as a known arbitrary function rPREDICTED = Ai(x, XrRAIN ),
where rPREDICTED is the predicted class, given x, and XrRAIN is the
data used to train the classifier. Your task is to choose and train the clas­
sification algorithm that would work best for yet unseen data. Describe,
in detail, different ways how you could accomplish this (and why). How
do you expect the various classification errors to behave? (10 points)

2 
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3. (a) Maximum Likelihood (4 points). Consider a univariate data set
X = 

(x1 , x2 , ... , xN) that has a log-normal distribution. Find the
maximum likelihood estimates of the mean µ and variance a2

• The
probability density function is given by

p(x) 
=

!-1-exp (-(lnx- µ)2 ), x > 0. 
X $a 20"2 

(b) Naive Bayes (6 points). Consider binary classification for multivari­
ate data X = {(r1,x1)}tE{l, ... ,N}, where rt E {0,1} and x1 E �d . 
Assume that

• r is Bernoulli distributed with P(r = 1) = Jr. 

• Variable x;, i = 1, ... , d is continuous and normally distributed
with P(x;lr = k) = N(µ;k, O";). The variance a; is class inde­
pendent!

• All variables are independent of each other given the class label
r (N ai"ve Bayes assumption). 

Show that the posterior distribution P(r = 

logistic form, i.e.
llx) can be written in

1 
P(r = llx) = 

d 1 + exp( wo + I;j=l WjXj) 

and write down the expressions for w0 and Wj, j = 1, ... , d.

[]. ,,,y ,, 

4. Featitre selection. Consider the feature selection in classification problems.

(a) What is feature selection and why is it needed? (4 points)
(b) Assume that you have a binary classification algorithm. Explain, also

using pseudocode, how you would implement forward and backward
selection of features (in a real world application). (4 points)

( c) What can you say about time complexity and the optimality of the
solutions produced by the forward and backward selection methods?
(2 points) 
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5. Combining classifiers (a) Explain why is it a good idea to teach several

different classifiers and use majority voting as the final classification. (2

points) (b) Why does this approach work better if the individual base­

learners are as different as possible? (2 points) (c) Give at least four ways 

to make them different. (4 points) (d) Assuming each base learner gives 

a correct classification with probability p and the classification errors are

independent of each other, what is the probability that a majority vote

over L classifiers gives the correct answer? (2 points) 
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