MS-E2139 Nonlinear Programming

Kimmo Berg

Exam, 10.12.2015

Note: problems 4 and 5 are **optional** for those who started the programming project work.

- 1. Explain shortly the following notions:
 - a) supporting hyperplane
 - b) lower-level set
 - c) condition number
 - d) weak duality
 - e) Maratos effect
 - f) complementary slackness condition
- a) Define local and global optimality. Explain what the necessary conditions and sufficient conditions mean.
 - b) Define a convex set and a convex function.
 - c) Define the convex optimization problem. Prove that the local minimum of a convex unconstrained problem is also global.
 - d) Write out the necessary and sufficient conditions (not KKT!) to the convex optimization problem. Define the needed notions.
 - e) Solve the following problem using the above conditions

min
$$||x - (1,1)||_1 = |x_1 - 1| + |x_2 - 1|$$

s.t. $x_1 \le 0$.

Prove that the problem has a solution.

3. a) Solve the problem

min
$$x_1x_2$$

s.t. $x_1 \ge 1$, $x_2 \ge 1$
 $2x_1 + x_2 \ge 6$.

Find all local minimum points. Find a KKT point that is not a local minimum.

b) Solve the problem

min
$$x_1$$

s.t. $x_2 \le 0$, $x_1^2 - x_2 \le 0$.

PLEASE TURN!

- 4.* a) Compare the central methods of unconstrained multidimensional optimization.
 - b) Derive the update equations in the primal-dual interior point algorithm for the general form LP problem using logarithmic barrier function.
- 5.* a) Explain how the reduced gradient method works.
 - b) Explain how the active set method works and solve using it the problem:

$$\begin{aligned} & \min & & \frac{1}{2}x^T H x + c^T x \\ & \text{s.t.} & & Ax \geq b, \end{aligned}$$

where

$$H = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ c = \begin{pmatrix} -4 \\ -1 \end{pmatrix}, \ A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \\ -4 & -6 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 0 \\ -5 \\ -5 \\ -35 \end{pmatrix}.$$

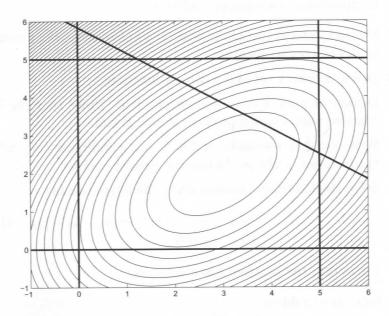


Figure 1: Problem 5b.

Start at point $x = (5 \ 0)^T$ and active constraint $x_1 \le 5$. Explain all the steps. You can use the figure in the steps.