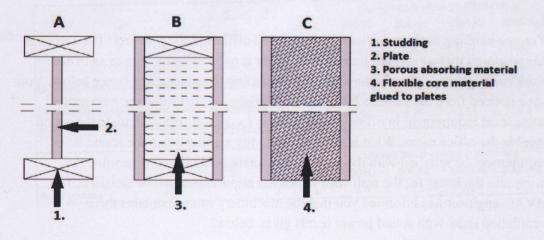
Rak-43.3415 Building Physics Design 2 – Acoustical Design EXAM 16.12.2015

Permissible equipment: writing accessories, calculator.

Write on each exam paper: course code and name, date, your name, student number and department.

Please write your answers in English.


1.

Explain the following concepts or phenomena and their significance to acoustical design:

- a) A-weighting
- b) floating floor (also present structural drawing)
- c) lateral sound reflection
- d) STI

2.

Below are depicted three structural types: A, B and C. Name the structures and explain what factors affect their sound insulation and how.

3.

a)

Derive an equation from the Sabine formula, with which you can calculate the absorption coefficient of a material from the reverberation times measured in a reverberation room. The reverberation time of the empty reverberation room is T_1 , the reverberation time of the room containing the material sample is T_2 and the surface area of the sample is *S*. Calculate the absorption coefficient of a material with the following measurement results and present the result graphically in octave bands 125 – 4000 Hz. The volume of the reverberation room is 300 m³ and the surface area of the material sample is 12 m².

[Hz]	125	250	500	1000	2000	4000
T ₁ [s]	4,0	4,0	3,3	2,9	2,9	2,9
T ₂ [s]	3,5	3,0	2,2	1,8	1,7	1,7

b)

Draw the structure of a *panel absorber* and sketch its typical sound absorption behavior in a figure, i.e. sound absorption coefficient as a function of frequency. Give two (2) examples of common structures in buildings that act as panel absorbers.

4.

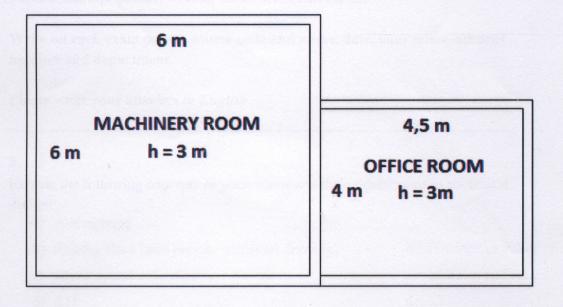
Your assignment as an acoustician is to choose the most silent compressor of three models. You are given the following acoustic data from the manufacturers:

- Compressor A: "Sound power level is 95 dB."
- Compressor B: "Sound level measured in an anechoic chamber at a distance of 5 m from the source is 80 dB."
- Compressor C: "Sound level is 80 dB measured in a 250 m3 room with a reverberation time of 1,6 s. Measurement conducted in the diffuse field."

The frequency distribution of all the compressors is reported to be as follows:

Octave band center frequency [Hz]	125	250	500	1000	2000	4000
Correction to be applied to L _w [dB]	-2	-4	-6	-8	-10	-20

Do the necessary calculations to answer which compressor you would choose.


5.

You are working as an acoustical designer in an office building project. The architect has proposed that a ventilation machinery room is to be situated next to an office work room, with a 100 mm concrete wall separating the spaces; see figure below. You have noticed from the Finnish Building Regulations D2-2012 that the background noise level requirement in office work rooms is $L_{A,eq,T} \le 33$ dB. Calculate the sound level in the office room. What is your advise to the architect: can the sound level requirement be satisfied with the proposed concrete wall? If not, determine the minimum thickness for the wall with which the requirement can be satisfied. The HVAC-engineer has informed you that the machinery rooms contains three ventilation units with sound power levels given below.

Do the calculations in octave bands 125-4000 Hz. Use the mass-law for calculating the sound insulation of the concrete wall. The density of concrete is 2500 kg/m^3 . Flanking transmission can be neglected. The rooms have the following surface materials:

- machinery room / walls, floor and ceiling: concrete
- office room / walls: gypsum board 13 mm over studding, except for the concrete wall facing the machinery room
- office room / floor: concrete
- office room / ceiling: suspended ceiling with perforated gypsum board panels (17 % perforation ratio), suspension height 200 mm

Frequency [Hz]	125	250	500	1000	2000	4000
Ventilation unit 1, L _w linear [dB]	83	85	86	81	79	75
Ventilation unit 2, L _w linear [dB]	74	78	79	77	74	72
Ventilation unit 3, L, linear [dB]	85	87	88	84	81	79

Appendix 1. Material data.

	sound absorption coefficient, α						
	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	
Concrete	0,01	0,01	0,02	0,02	0,02	0,02	
Gypsum board 13 mm, studding 50x100 mm	0,29	0,10	0,05	0,04	0,07	0,09	
Perforated gypsum board panel, perforation ratio 17 %, suspension height 200 mm	0,27	0,5	0,76	0,58	0,54	0,54	
		octa	ve band ce	enter frequ			
	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	
A-weighting	-16,1	-8,6	-3,2	0,0	1,2	1,0	