February 2016, 2nd Exam - Feel free to add to this

Q1: various definition true/false

... Is Gaussian mixture discriminant?

... Is it possible to determine generalization error with training data?

Can you perform ____ with unlabelled data?

Q2: Bayesian Decision Theory & Parametric Methods

Blah blah classifiers, 100 samples of binary data, sorted so that first 50% is 0, second 1. Data is in bins/groups of 25.. something something...

a) What is the version space of the above classifiers?

<Something about posterior, prior, maximum a posteriori>

<Maximum likelihood given σ^2 ?>

Q3: Combining Classifiers

<Description here>... something about 3 classifiers K

- a) Explain the advantages of using multiple classifiers and how to combine them.
- b) List 4 methods to make classifiers diverse.
- c) The advantages and disadvantages of majority voting rather than best base as the final classification.
- d) Calculate the error for each classifier K below
- e) Calculate the combined error of all K assuming they are statistically independent
- f) Based on the probabilities below, do you think it is feasible that they are statistically independent?

Value	$P(K_1 = 0 C)$	$P(K_1 = 1 C)$	$P(K_2 = 0 C)$	$P(K_2)$	$P(K_3 = 0 C)$	$P(K_3)$
				= 1 C)		= 1 C)
C=1	0.12	0.88	0.20	0.80	0.16	0.84
C=0	0.86	0.14	0.82	0.18	0.90	0.10

Q4: PCA

Consider principle component analysis (PCA) for the 2-dimensional data below.

- a) Do The PCA learning using the 2-dimentional data set in the table below. Describe the steps of your solution.
- b) Sketch the data points and direction of maximal variance

- c) Compute the proportion of variance (PoV) explained by the first principal component.
- d) Find the reconstruction \hat{x} of point $\mathbf{x} = [4.0, 7.0]^{\mathsf{T}}$ with the first principle component.

t	x_1^t	x_2^t
1	2.0	2.0
2	3.0 5.0	4.0
3	5.0	6.0

Q5: K-Means Clustering

Do three iterations for K-means clustering on the 2-dimensional data below. Use K = 2 clusters and the initial prototype vectors (=mean vectors) m_1 =(0.0, 2.0) and m_2 =(2.0,0.0). Write down calculation procedure and the cluster memberships as well as mean vectors after each iteration. Draw the data points, cluster means and cluster boundary after each iteration.

t	x^t
1	(0.0,
	1.0)
2	(1.0,
	2.0)
3	(4.0,
	5.0)