T-106.5400 String Algorithms Exam May 19, 2014

Examiner: Travis Gagie

No written material is allowed in this exam. Submit at least one answer sheet, even if an empty one! Write on *each* answer sheet you submit the code of the course, the date, your name, and your student ID number. This exam has 5 questions (continued on the back of the page) each worth 20%; try to answer them all.

- 1. Let $S_1 = \text{ILLALLASILLALLA}$ \$ and assume \$ is lexicographically smaller than all other characters. For the following questions, you don't need to show how you arrive at your solutions:
 - Build the suffix tree for S_1 .
 - Compute the LZ77 parse of S_1 .
 - Build the suffix array for S_1 .
 - Build a Huffman code for the distribution of characters in S_1 .
 - Apply move-to-front coding to S_1 , just writing the numbers in decimal, starting with the list S_1 , S_2 , S_3 , S_4 , S_4 , S_5 , S_4 , S_5 , S_6 , S_7 , S_8 ,
- 2. Below are a wavelet tree for the BWT of S_1 and the function C(a) that returns the partial sums of the characters' frequencies. Suppose each node v supports the queries v.rank $_0(i)$ and v.rank $_1(i)$ on the binary sequence it stores. Considering the tree as an FM-index, list the rank queries used to count the number of occurrences of LAL in S_1 .

3. How can you build a small index for a text S_2 such that later, given a pattern P and an integer k, in $\mathcal{O}(|P|)$ time you can find the longest substring of P that occurs in S_2 at least k times? (If you can't get $\mathcal{O}(|P|)$ time, $\mathcal{O}(|P|^2)$ time is ok.)

Hint: Use a suffix tree of S_2 whose internal nodes are labelled with the numbers of leaves in their subtrees.