4. How can you build a small index for a text S_3 such that later, given a pattern P, in $\mathcal{O}(|P|)$ time you can find the leftmost occurrence of P in S_3 ? How can you modify it such that, given k, in $\mathcal{O}(|P| + \log |S|)$ time you can find the kth occurrence of P in S_3 , counting from the left?

Hint: Use a suffix tree and a range-minimum data structure for the first part of the question, then replace the range-minimum data structure by a wavelet tree for the second part.

5. Let S_4 and S_5 be two strings and let C be a longest common subsequence of BWT(S_4) and BWT(S_5). If S_4 and S_5 are very similar then C is usually nearly as long as they (and their BWTs) are. For example, if

$$S_4 = \mathsf{GCACTTAGAGGTCAGT}$$
 $S_5 = \mathsf{GCACTAGACGTCAGT}$

then

$$\mathsf{BWT}(S_4) = \mathsf{TCTGCGTAAAAGGTGC} \qquad \mathsf{BWT}(S_5) = \mathsf{TGCTCGTAAAACGCG}$$

and we can choose

$$C = \mathsf{TCTCGTAAAAGG}$$
.

Let D_1 and D_2 be the complements of C in BWT (S_4) and BWT (S_5) , respectively, and let B_1 and B_2 be bitvectors with 1s marking the characters of D_1 and D_2 in BWT (S_4) and BWT (S_5) . In our example

$$D_1 = \mathsf{GTGC} + D_2 = \mathsf{GCC}$$

and

$$B_1 = 0001000000000111$$
 $B_2 = 010000000001010$.

Suppose we have data structures supporting fast rank queries over BWT(S_4), D_1 , D_2 , B_1 and B_2 , and fast select₀ queries over B_1 . Explain

- how we can use these data structures to support fast rank queries over $BWT(S_5)$,
- why this might be useful if we already have an FM-index for S_4 and we want to build a small FM-index for S_5 .

Hint: Remember that $\mathsf{BWT}(S_5).\mathsf{rank}_X(i)$ returns the number of $X\mathsf{s}$ in $\mathsf{BWT}(S_5)[1..i]$, some of which are in D_2 and the rest of which are in C. To count the $X\mathsf{s}$ in both $\mathsf{BWT}(S_5)[1..i]$ and C, find a position j such that the number of characters in both $\mathsf{BWT}(S_4)[1..j]$ and C is the same as the number in both $\mathsf{BWT}(S_5)[1..i]$ and C. The number of $X\mathsf{s}$ in both $\mathsf{BWT}(S_4)[1..j]$ and C is the number in $\mathsf{BWT}(S_4)[1..j]$ minus the number in both $\mathsf{BWT}(S_4)[1..j]$ and D_1 .