4. How can you build a small index for a text S; such that later, given a pattern P, in O(|P|)
time you can find the leftmost occurrence of P in S3? How can you modify it such that,

given k, in O(|P| +log|S|) time you can find the kth occurrence of P in Ss, counting
from the left?

Hint: Use a suffix tree and a range-minimum data structure for the first part of the ques-
tion, then replace the range-minimum data structure by a wavelet tree for the second
part.

5. Let Sy and Sj be two strings and let C' be a longest common subsequence of BWT(S,)
and BWT(S5). If Sy and Sy are very similar then C' is usually nearly as long as they (and
their BWTs) are. For example, if

Sy = GCACTTAGAGGTCAGT Ss = GCACTAGACGTCAGT

then

BWT(S,) = TCTGCGTAAAAGGTGC BWT(Ss) = TGCTCGTAAAACGCG

and we can choose
C = TCTCGTAAAAGG.

Let Dy and D, be the complements of C' in BWT(S,) and BWT(S;), respectively, and
let By and B, be bitvectors with 1s marking the characters of Dy and D, in BWT(S,)
and BWT(S5). In our example

and
B; = 0001000000000111 B, = 010000000001010.

Suppose we have data structures supporting fast rank queries over BWT(S,), Dy, Dy, B,
and B,, and fast selecty queries over B;. Explain

e how we can use these data structures to support fast rank queries over BWT(S;),

e why this might be useful if we already have an FM-index for S, and we want to
build a small FM-index for S;.

Hint: Remember that BWT (S;).ranky (i) returns the number of X's in BWT(S5)[1..],
some of which are in D, and the rest of which are in C. To count the Xs in both
BWT(S5)[1..7] and C, find a position j such that the number of characters in both
BWT(S,)[1..;] and C is the same as the number in both BWT(S;)[1..i] and C'. The
number of Xs in both BWT(Sy)[1..5] and C is the number in BWT(S4)[1..j] minus the
number in both BWT(.S,)[1..7] and D;.

