T-79.5501 Cryptology Midterm Exam 2 April 8, 2016

1. (6 pts) Let $\alpha = (010)$ be an element in the Galois field $\mathbb{F} = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$. Consider function $f: \mathbb{Z}_8 \to \{0,1\}$ defined as

$$f(u) = \begin{cases} \operatorname{msb}(\alpha^u), & \text{for } u \neq 7 \\ 0, & \text{for } u = 7 \end{cases}$$

where msb denotes the most significant bit. By identifying $u = u_3 2^2 + u_2 2 + u_1 \in \mathbb{Z}_8$ with $(u_3, u_2, u_1) \in \{0, 1\}^3$, the function f is defined from $\{0, 1\}^3$ to $\{0, 1\}$.

- (a) (3 pts) Compute the truth table of f.
- (b) (3 pts) Determine the algebraic normal form ANF of f. In case you do not have any result from (a), explain how you would compute the ANF.
- 2. (6 pts) The number 332799499 is a nontrivial square root of 1 modulo 332860009. This modulus is a product of two primes. Find the two prime factors of 332860009.
- 3. (6 pts) Element $\alpha=5$ is of order 24 in the multiplicative group \mathbb{Z}_{2016}^* . It is given that element $\beta=1613$ is in the subgroup generated by α . Using Shanks' algorithm attempt to determine x such that

$$5^x \equiv 1613 \pmod{2016}$$
.

- 4. Consider the elliptic curve $E: y^2 = x^3 + x + 2016$ over \mathbb{F}_{5011} .
 - (a) (3 pts) Show ¹ that there exists $y \in \mathbb{F}_{5011}$ such that $(4, \pm y) \in E$.
 - (b) (3 pts) Show how to use the fast exponentiation algorithm to compute $y \in \mathbb{F}_{5011}$ such that $(4, \pm y) \in E$.

Exam Calculator Policy. It is allowed to use a function calculator, however no programmable calculator.

$$\left(\frac{2}{n}\right) = \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{8} \\ -1 & \text{if } n \equiv \pm 3 \pmod{8}. \end{cases}$$

$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{if } m \equiv n \equiv 3 \pmod{4} \\ \left(\frac{n}{m}\right) & \text{otherwise.} \end{cases}$$

¹Here you may find the following formulas useful: