Exam for CS-E3210 - Machine Learning: Basic Principles (27.10.2016) General Information - Put your name and student id on EVERY page you use. - To pass the course you must also pass the term project. Results of this examination are valid for one year after the examination date. - Allowed equipment: calculator, pen, pencil and eraser. - The number of points achieved for a question with M answer choices, when selecting T correct answers and F wrong answers is given by $\max\{0, 10(T-F)/M\}$. Question 1. Consider a classification problem with three classes $\mathcal{Y} = \{C_1, C_2, C_3\}$. We observe a new point $\mathbf{x} \in \mathcal{X}$ whose likelihood under the three classes is $p(\mathbf{x}|r=C_1)=0.01$, $p(\mathbf{x}|r=C_2)=0.40$ and $p(\mathbf{x}|r=C_3)=0.60$, respectively. Assume we have prior information that $p(r=C_1)=0.98$ and $p(r=C_3)=0.01$. According to Bayesian decision theory we should classify \mathbf{x} as | | $r = C_3$ since it was most likely to be generated from that class. | \bigcirc | |----|--|------------| | В. | $r=C_1$ since it yields highest posterior $\frac{p(\mathbf{x} r=C_1)p(r=C_1)}{p(\mathbf{x})}\approx 1/2$. | \bigcirc | | C. | $r = C_1$ since it yields highest product $p(\mathbf{x} r = C_1)p(r = C_1) \approx 1/100$. | \bigcirc | | D. | 'reject' since no class C gives $p(r = C \mathbf{x}) > 3/4$. | \bigcirc | | E. | None of the other answers is correct. | \circ | Question 2. Consider a regression problem with scalar input $x \in \mathbb{R}$ and real-valued output $r \in \mathbb{R}$. Using polynomial basis functions $\phi_i(x) = x^i$ for linear regression $g(x) = x^i$ $\sum_{i=0}^{\hat{M}} w_i \phi_i(x)$ | Α. | involves $M+1$ non-negative parameters $w_i \geq 0, i=0,\ldots,M$. | \bigcirc | |----|---|------------| | В. | gives a linear model $g(x) = w_0 + w_1 x$ if $M = 1$. | \bigcirc | | C. | results in a non-linear predictor if $M \geq 2$. | \bigcirc | | D. | in general tends to overfit with high M . | \bigcirc | | Ε. | none of the above is correct. | \bigcirc | Question 3. A popular method for choosing model complexity is cross-validation (CV), where the dataset \mathcal{D} is split into training, validation and test datasets. Following statements are true: | A. | We should always use 30% of data as test data. | \bigcirc | |----|---|------------| | В. | Training and validation sets should be disjoint. | \bigcirc | | C. | The error on the test set is an unbiased estimate for the generalisation error. | \bigcirc | | D. | The model complexity should be selected using the error on the validation set. | \bigcirc | | Ε. | In general, Leave-One-Out CV tends to overfit. | \bigcirc | | F. | After selecting the model complexity, we can use training and validation sets to le | earn | the model parameters. | Question 4. Bias-variance decomposition (BVD) refers to the identity $\mathbb{E}_{\mathcal{D}}[(g_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(g_{\mathcal{D}}(x) - \mathbb{E}_{\mathcal{D}}g_{\mathcal{D}}(x))^2] + (\mathbb{E}_{\mathcal{D}}g_{\mathcal{D}}(x) - f(x))^2$ where $g_{\mathcal{D}}(x)$ is a regress mated from a dataset \mathcal{D} , and $f(x)$ is the assumed true function. Following states are true: | sor esti- | | |---|------------------------|--| | A. BVD shows how stable a model is with respect to noise in the dataset. B. BVD shows how stable a model is with respect to the model complexity. C. More complex models typically yield high bias. D. More complex models typically yield high variance. E. A model which yields low bias tends to overfit the data. F. A model yielding low bias typically incurs high variance, and vice versa. G. Adding a zero-mean prior or regulariser increases bias. H. There always exist models yielding zero bias and zero variance. I. More complex models tend to have higher bias. J. Decreasing bias is always preferred to decreasing variance. K. None of the other answers is correct. | 00000000000 | | | Question 5. In Bayesian learning, we learn a posterior distribution $p(\theta \mathcal{D})$ of the pareters θ given the data \mathcal{D} . The predictive distribution $p(r x,\mathcal{D})$ describes the distribution an estimated response r for a new input x given the data \mathcal{D} . The ideal Bayesian is dictive distribution uses | | | | A. the most likely parameter values $\theta_{\text{ML}} = \operatorname{argmax}_{\theta} p(\mathcal{D} \theta)$ as $p(r x, \theta_{\text{ML}})$.
B. the highest posterior value $\theta_{\text{MAP}} = \operatorname{argmax}_{\theta} p(\theta \mathcal{D})$ as $p(r x, \theta_{\text{MAP}})$.
C. the expected likelihood value $\theta_{\text{Bayes}} = \int \theta p(\mathcal{D} \theta) d\theta$ as $p(r x, \theta_{\text{Bayes}})$.
D. the expected posterior value $\theta_{\text{Bayes}} = \int \theta p(\theta \mathcal{D}) d\theta$ as $p(r x, \theta_{\text{Bayes}})$.
E. expectation over the posterior, i.e., $p(r x, \mathcal{D}) = \int p(r x, \theta) p(\theta \mathcal{D}) d\theta$.
F. expectation over the likelihood, i.e., $p(r x, \mathcal{D}) = \int p(r x, \theta) p(\mathcal{D} \theta) d\theta$.
G. None of the other answers is correct. | 000000 | | | Question 6. Let $\mathcal{I}("statement")$ denote the indicator function which is equal "statement" is true and equal to zero else. We call a classifier $h(\cdot): \mathbb{R}^2 \to \{0,1\}$ | to one if
linear if | | | A. its decision boundary is a line.
B. its decision boundary is a circle.
C. it can be written as $h(\mathbf{x}) = \mathcal{I}(\mathbf{w}^T\mathbf{x} \geq w_0)$ for some $\mathbf{w} \in \mathbb{R}^2, w_0 \in \mathbb{R}$.
D. it can be written as $h(\mathbf{x}) = \mathcal{I}(x_1^2 + x_2^4 \geq 0)$.
E. None of the other answers is correct. | 00000 | | | Question 7. The technique called "Bagging" | | | | A. combines the predictions obtained for different (but related) datasets. B. puts more emphasis on training examples which are predicted incorrectly. C. only amounts to resampling the dataset. D. None of the other answers is correct. | 0000 | | | Question 8. We observe labeled data $\mathcal{D} = \{\mathbf{x}^t, r^t\}_{t=1}^N$ which we stack into the vertex $\mathbf{r} = (r^1, \dots, r^N) \in \mathbb{R}^N$ and matrix $\mathbf{X} = (\mathbf{x}^1, \dots, \mathbf{x}^N)^T \in \mathbb{R}^{N \times d}$, respectively. The control of the real-valued output/label r^t from the multivariate in $\mathbf{x}^t \in \mathbb{R}^d$ under squared error loss $E(g(\cdot) \mathcal{D}) := (1/N) \sum_{t=1}^N (r^t - g(\mathbf{x}^t))^2$. A. is always given by $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with weight vector $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{r}$. B. is always unique, i.e., there is one and only one optimal predictor $g(\mathbf{x})$. C. can be found by gradient descent for the cost function $E(g(\cdot) \mathcal{D})$. D. does not exist for some datasets. E. None of the other answers is correct. | etor pti- put | |---|---------------| | Question 9. The "Bootstrap" method A. is a parametric machine learning method. B. is a classification method. C. allows to assess the reliability of a hypothesis. D. can only be used for unlabeled data. E. can be used for "Bagging". F. None of the other answers is correct. | 00000 |