Hannukainen

Exam 27.10.2016

Please fill in clearly on every sheet the data on you and the examination. On Examination code mark

course code, title and text mid-term or final examination.

You have two options

(a)

Mathematics Aalto University

- Solve all problems. Grade is based only on the exam.
- Solve any three problems. Grade is based on exercise points + exam points.

The exam time is three hours (3h). No electronic calculators or materials are allowed.

- - 1. Let $X \in \mathbb{R}^{n \times n}$ such that $X = X^T$ and $\|\cdot\|$ be an operator norm induced by the Euclidean norm $\|\cdot\|_2$. Show that
 - $||X|| = |\lambda_{max}(X)|$ and $||Q^T X U|| = ||X||$,
 - in which λ_{max} is the largest eigenvalue of X and $Q, U \in \mathbb{R}^{n \times n}$ are unitary matrices.
 - (b) when ||X|| < 1 there holds that

$$\|(I-X)^{-1}\| = \frac{1}{1-\|X\|}.$$

2. Let $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Consider minimising the functional $J: \mathbb{R}^n \to \mathbb{R}$,

 $J(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$

using the line search method starting from initial guess
$$x_0$$
. Denote iterates as x_1, x_2, \ldots

- and the search direction on step n as \boldsymbol{p}_n .
 - (a) Derive the formula for computing x_n from x_{n-1}
 - (b) Let x_0 be the initial guess and p_1, p_2 be A-orthogonal search directions on steps n = 1and n=2. Show that \boldsymbol{x}_2 satisfies $J(\boldsymbol{x}_2) = \min_{\alpha, \beta \in \mathbb{R}} J(\boldsymbol{x}_0 + \alpha \boldsymbol{p}_1 + \beta \boldsymbol{p}_2)$

3. Consider the problem: Given $A \in \mathbb{C}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{C}^m$, find $\boldsymbol{x} \in \mathbb{C}^n$ such that $||Ax - b||_2$ (1)is minimized. Assume, that A is of full rank.

(a) Find the Givens-rotation matrix $Q_x \in \mathbb{R}^{2\times 2}$ such that

$$Q_x oldsymbol{x} = egin{bmatrix} \|oldsymbol{x}\|_2 \ 0 \end{bmatrix}$$

(b) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & \pi \\ 1 & 0 \end{bmatrix}$

Compute the QR-decomposition of A using Givens rotation matrices.

(c) Derive a formula for solving the least squares problem (1) using
$$QR$$
-decomposition.
4. Let $A \in \mathbb{R}^{n \times n}$ be such that

 $A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix},$

- in which $A_{11} \in \mathbb{R}^{k \times k}$, k < n. In addition, let $A_{11} = L_{11}L_{11}^T$ and $A_{22} = L_{22}L_{22}^T$, in which L_{11} and L_{22} are invertible lower triangular matrices.
 - (a) Show that A is positive definite. (b) Give the Cholesky decomposition of A. (c) Let $b \in \mathbb{C}^n$. Explain, how Cholesky-decomposition of A can be used to solve the problem Ax = b.