CHEM-E4130: CHEMISTRY OF ELEMENTS ## Exam 15.12.2016 Please answer to a minimum of five questions. You may also answer to all the six questions; in that case the five best answers will be taken into account. - 1. Explain shortly the following terms/concepts/phenomena: - a. disproportionation - b. mixed valency - c. rare earth element - d. critical raw material - 2. Describe shortly the crystal structures and/or chemical bonding of the following materials, and also the specific properties/application of these materials derived from the crystal structure/type of bonding. - a. BN (high-pressure form) - b. B_2H_6 - c. LaB₆ - d. TiH_x - c. Li_xCoO₂ - 3. Give a good chemical reason/explanation for the following facts: - a. Hafnium and zirconium mostly exist in nature in the same minerals. - b. Transition metals have in general higher melting points than alkali and alkaline earth metals. - c. For lanthanoids the melting point increases in a linear manner with increasing atomic number, but europium and ytterbium are exceptions. Why and to which direction? - d. The luminescence emission of Eu³⁺ occurs in different compounds at the (essentially) same wavelength. - 4. a. Give the electron configurations for the following elements and answer to the questions given below (with a short argument!): Sc, Ti, Cu, Y, La, Eu, Gd, Tb, Yb and Lu. - b1. Which of the elements form(s) compounds with oxidation state +IV? - b2. Which of the elements form(s) compounds with oxidation state +II? - b3. Which of the elements form(s) compounds with oxidation state +1? - b4. Which of the elements has the largest metal radius? - 5. a. Sketch the crystal field splitting of d orbitals in (i) octahedral and (ii) tetrahedral coordinations. - b. How many unpaired electrons the following ions have (assume high spin) in (i) octahedral, and (ii) tetrahedral crystal fields: Cr³⁺, Mn²⁺, Fe²⁺ and Co⁺² - c. Which of the following ions is/are colourless and why: Cr3+, CrO42-, Mn2+, Fe2+, Fe3+, Co+2 - 6. a. Shortly describe two macroscopically observable phenomena arising from relativistic effects in the case of heavy elements. - b. What major difference in the oxidation states of Au and Ag arises from relativistic effects. | 1
H | | | | | | | | | | | | | | | | | 2
He | |----------|----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | 3
LI | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8 | 9
F | 10
Ne | | 11
Na | 12
Mg | | | | | | | | | | | 13
Al | 14
Si | 15
P | 16
S | 17
CI | 18
Ar | | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
NI | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 37
Rb | 38
Sr | 39
Y | 40
Zr | 4 2 D | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 55
Cs | 56
Ba | 57
to
71 | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Ti | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 87
Fr | 88
Ra | 89
to
103 | 104
Rf | 105
Ha | 106
Sg | 107
Ns | 108
Hs | 109
Mt | | | | | | | | | | | 57
La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |----------|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----| | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | Ac | Th | Pa | U | 93 | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |