CS-E4810 Machine Learning and Neural Networks Examination 16th December 2016/Karhunen

(Voit vastata tenttiin myös suomeksi.)

- 1. Answer briefly (using a few lines) to the following questions or items:
 - (a) How does updating with a momentum term differ from the corresponding standard updating rule?
 - (b) How is Jacobian matrix defined?
 - (c) What means curse of dimensionality?
 - (d) In which neural networks method one can use multiquadratic and inverse multiquadratic functions?
 - (e) Which are the two main criteria for measuring non-Gaussianity?
 - (f) Explain briefly what is NARX model.
- 2. Consider the general linear model for modeling a scalar variable

$$y: y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x})$$

where \mathbf{x} is data vector, \mathbf{w} is M-dimensional weight vector with elements $w_0, w_1, ..., w_{M-1}$, and the $\phi_j(\mathbf{x})$, j=1,...,M-1 are some basis functions which can be nonlinear. Often $\phi_0(\mathbf{x})=1$ is the dummy 'basis function' corresponding to the bias term w_0 . You have at your disposal N input-output training pairs (t_i, \mathbf{x}_i) . Model the dependence between input vector \mathbf{x} and scalar output t using the general linear model above. Fit the model to the training data using the least-squares method with the added weight decay regularizer $0.5\lambda\mathbf{w}^T\mathbf{w}$.

- 3. Explain what are classification and regression trees (CART), and their advantages and drawbacks. How are random forests built from them?
- 4. Consider a supervised learning problem in which the output is scalar y and the desired response is d. Assume that we have trained for solving this problem two different neural networks whose outputs are respectively y_1 and y_2 . Assume further that y_1 and y_2 are unbiased, and the noise term is neglected as is often done. Then the mean-square errors of the outputs y_1 and y_2 equal to their variances σ_1^2 and σ_2^2 , respectively.

Consider now the weighted output of the two networks

$$y = \alpha y_1 + (1 - \alpha)y_2$$

where the weight α satisfies $0 \le \alpha \le 1$.

- (a) Is the weighted output y unbiased?
- (b) What is the mean-square error of y when y_1 and y_2 are assumed to be statistically independent of each other?
- (c) Find the value of α that minimizes the mean-square error of y.