

CHEM-E7105 – Process Development

Name:	Student nr:
Be short, but precise in your answ Avaid talling stories!	vers.
Avoid telling stories!Calculator can be used.	
1a) Why and by which chemical sectors	batch processes are used in chemical industry [3]

1b) Describe shortly the batch process of figure A [3]

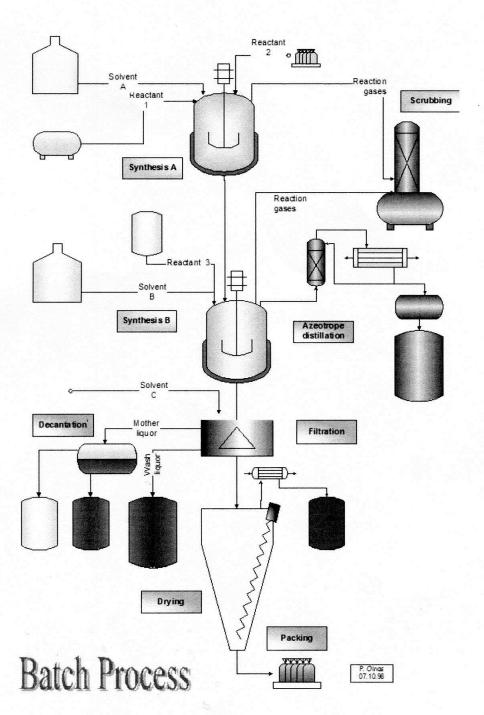


Figure A. Batch process

PO

2) Mechanistic models in chemical engineering [6]

3a) What information is needed for thermal safety [2]

3b) Methods for preventing corrosion [2]

3c) Selection criteria for the safe manufacturing [2]

PO

4) Principles of process intensification [6]

5. Balance calculation [12]

Sulphuric acid can be produced by two absorption routes. In the first route, sulphur trioxide is contacted with water by chemical absorption

Route 1:
$$H_2O + SO_3(g) \rightarrow H_2SO_4(I)$$

Another way is to use so-called contact process by absorbing sulphur trioxide to sulphuric acid and forming firt fuming sulphuric acid (oleum, $H_2SO_4:SO_3$)

Route 2:
$$H_2SO_4 + SO_3(g) \rightarrow H_2SO_4 SO_3(I)$$

Oleum is then reacted with water to form concentrated sulphuric acid.

$$H_2SO_4:SO_3(I) + H_2O(I) \rightarrow 2 H_2SO_4(I)$$

- a) Which route is more appropriate by inspecting the heats of formation of the components?
- b) Calculate mass balance for the route 2 (products; moles, masses, volumes weight percentages) for an absorption where 20 kmol/h of H_2SO_4 (99 wt.% acid, rest is water) is scrubbed with equimolar amount of SO_3 gas at 50 °C and 1 bar pressure (R=8.314 $\frac{J}{mol/K}$). Note that water in feed H_2SO_4 also reacts to H_2SO_4 according route 1 reaction scheme.
- c) If the absorber diameter of route 2 process is 500 mm, what is the superficial velocity of SO₃ gas?

INFORMATION

Substance	MW	ρι	ΔH_f
	g/mol	kg/m³	kJ/mol
H ₂ SO ₄	98.08	1842	-814.0
SO ₃	80.06	1850	-395.7
H₂O	18.01	1000	-285.8
Oleum	178.14	see fig. B	-683.92

 ΔH_f , heat of formation

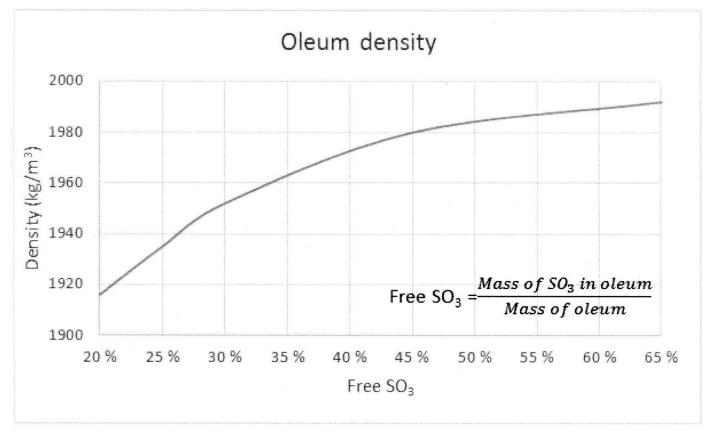


Figure B. Oleum density