1) General

Briefly describe 6 things (these could, for example, be technical, cost or even town planning considerations) **that influence the topology** (the layout) **and/or protection of a distribution network?**

2) Regulation

- c) What part of the electricity business requires regulation and why?
- **d)** What are the main principles of this regulation? (You can answer this by specific reference to a particular country's regulation model or in general terms)

3) Technical constraints

Let's say the voltage at the end of a medium voltage distribution feeder is 19.6 kV and that it is feeding a load of 6.0 MW with a power factor of 0.8 lagging.

- a) What is the voltage at the busbar of the primary substation?
- b) What is the maximum 3 phase short circuit current? Is this OK if the protection operates in 0.4s?
- c) What is the minimum 2 phase short circuit current?
- d) Do you have any (short!) comments to make about the accuracy of the calculation method you have used?

Cable type	r	<i>x</i> Max steady-state load current		I _{sc,1s}
	Ω/km	Ω/km	(A)	(kA)
AHXAMK-W3x120	0.3	0.123	265	9.4

4) *Economics*

A distribution network company has decided to invest in a substantial amount of new cabling. They forecast installing 100 km of 3-phase 20 kV cable a year for the next 5 years. The cable manufacturer is offering substantial discounts on large purchases.

You must decide whether to:

- i) buy 500 km of 240 mm² cable at 22.00 \notin /m
- ii) $250 \text{ km of } 185 \text{ mm}^2 \text{ cable at } 21.90 \text{ €/m and } 250 \text{ km of } 240 \text{ mm}^2 \text{ cable at } 26.00 \text{ €/m}.$

The cable will be bought in the present, but the costs of installing the cables differ, at 65.50 €/m for the smaller section and 70.00 €/m for the larger. Assume that the same amount of each cable type (50 km of each) will be installed each year in option **ii**).

The interest rate projected for the 5 year period is 5%/year. You do not have to take loss costs into account, but you must calculate the present value of the annual costs of installation over the 5 year period.

- a) Which is the cheaper investment?
- b) Based on this result, which cable section would you advise should be purchased?

5) Reliability

Should a manually operated disconnector, a remote operated disconnector, a circuit breaker, or no switch be installed in the switch position shown in the diagram (just downstream from customer A)?

Repair time for faults in line section B is 4 hours including switching. The disconnectors cannot break fault currents. Load growth is 3% per year and the interest rate is 5% per year. The review period is 20 years.

Customer interruption values	<i>a</i> (€/kW/fault)	b (€/kWh)
Customer A	3.50	30.00
Customer B	0.50	5.00

Switch type	Operating time	Investment cost
Manual disconnector	1 hour	€3000.00
Remote-operated disconnector	0.1 hour	€12000.00
Circuit breaker	0 hours	€20000.00

Some formulae that may or may not be of help...

$$\kappa = \gamma \frac{\gamma^t - 1}{\gamma - 1}$$

where, for load related annual costs:

$$\gamma = \frac{(1 + r/100)}{(1 + p/100)}$$

and for loss related annual costs:

$$\gamma = \frac{(1 + r/100)^2}{(1 + p/100)}$$