Please note the following: your answers will be graded only if you have completed the three obligatory home assignments before the exam!

Assignment 1 (1+1+8p)

Two 3-bit binary numbers in the range 0 to 7 are represented by the sequences of propositional variables $x_2x_1x_0$ and $y_2y_1y_0$, where x_2 and y_2 are respectively the most significant bits of the numbers.

- Construct a propositional formula that is true if and only if x₂x₁x₀ is obtained from y₂y₁y₀ by doing a rotation one bit to the right.
- 2. Construct a propositional formula which is true if and only if the value of the binary number $x_2x_1x_0$ is 6.
- Construct a propositional formula that is true if and only if the relation x₂x₁x₀ ≤ y₂y₁y₀ holds, that is, the first number is less than or equal to the second number.

Assignment 2 (2+3+5p) Let ϕ_1 , ϕ_2 , and ϕ_3 be sentences of the propositional logic. Justify your answer in each case.

- (a) If ϕ_1 is satisfiable and ϕ_2 is valid, is $\phi_1 \wedge \phi_2$ satisfiable? Is it valid?
- (b) Assume that $\phi_1 \models \phi_2$ and $\neg(\neg \phi_2 \lor \phi_3)$ is not satisfiable. What can you say about the relation between ϕ_1 and ϕ_3 ?
- (c) Let φ be any sentence in the propositional logic that consists of atomic propositions as well as connectives ∨, ∧ and ¬, with at most one occurrence of each atomic proposition in φ. Claim: φ is satisfiable. Is this claim necessarily true? Give a proof sketch or give a counter-example.

Assignment 3 (10p) Prove the following claims using semantic tableaux:

- (a) $\models (A \rightarrow B) \rightarrow ((C \rightarrow D) \rightarrow (A \land C \rightarrow B \land D)).$
- (b) $\models \neg (\exists x \forall y \exists z \neg P(x, y, z) \land \forall z \exists y \forall x P(z, y, x)).$

Tableau proofs must contain all intermediate steps !!!

Assignment 4 (10p) Derive a Prenex normal form and a clausal form (i.e., a set of clauses S) for the sentence $\neg (\exists x (A(x) \lor B(x) \lor C(x)) \rightarrow \exists x A(x) \lor \exists y B(y) \lor \exists z C(z))$.

Make S as simple as possible. Prove that S is unsatisfiable using resolution.

Assignment 5 (10p)

- (a) Derive for the program if (x < y) then $\{z = y x\}$ else $\{z = x y\}$ the weakest precondition strarting from the postcondition (z > 0). (4p)
- (b) Consider the following program Triple:

$$v=x; z=x; while(!(z==0)) \{z=z-1; v=v+2\}.$$

Use weakest preconditions and a suitable invariant (6p) to establish

$$\models_p [\text{true}] \text{ Triple} [v == 3 * x].$$