T-79.5501 Cryptology Midterm Exam 2 April 11, 2014

(6 pts) The sequence

$$S = 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 \dots$$

is generated using an LFSR with polynomial $f(x) = 1 + x^3 + x^4$. Find a polynomial P(x) such that

$$S(x) = \frac{P(x)}{f^*(x)}.$$

- (6 pts) The number 332799499 is a nontrivial square root of 1 modulo 332860009. This modulus is a product of two primes. Find the two prime factors of 332860009.
- 3. (6 pts) The number $p = 257 = 2^{2^3} + 1$ is a Fermat prime. Determine the five least significant bits of x such that

$$3^x \equiv 226 \pmod{257}$$

using the Pohlig-Hellman algorithm.

The task can be done by hand with the help of the following publicly computable information:

In general, $2^{-i} \equiv -2^{8-i} \pmod{257}$, for all $i = 0, 1, 2, \dots, 7$.

- 4. (6 pts) Consider the elliptic curve $E: y^2 = x^3 + x + 2014$ over \mathbb{F}_{5011} .
 - (a) (3 pts) Show 1 that there exists $y \in \mathbb{F}_{5011}$ such that $(4, \pm y) \in E$.
 - (b) (3 pts) Show how to use the fast exponentiation algorithm to compute one $y \in \mathbb{F}_{5011}$ such that $(4, \pm y) \in E$.

Exam Calculator Policy. It is allowed to use a function calculator, however no programmable calculator.

$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{if } m \equiv n \equiv 3 \pmod{4} \\ \left(\frac{n}{m}\right) & \text{otherwise.} \end{cases}$$

¹Here you may find the following formulas useful: