MSC-1.741 Finite Element Method

Exam 4.4.2017

Please fill in clearly on every sheet the data on you and the examination. On Examination code mark the course code, title and text mid-term or final examination.

You have two options

- 1. Solve all problems. Grade is based only on the exam.
- 2. Solve any three problems. Grade is based on exercise points + exam points. To choose this option, you must have completed the final project.

The exam time is three hours (3h). No electronic calculators or materials are allowed.

1. Let Ω be a bounded domain and $f \in L^2(\Omega)$. Consider the strong problem: find u such that

$$\begin{cases}
-\nabla \cdot (\nabla u) = f \text{ in } \Omega \\
u = 0 \text{ on } \partial \Omega.
\end{cases}$$
(1)

(a) Derive the weak form of the strong problem (1): find $u \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V.$$

Specify a, L, the space V and it's norm $\|\cdot\|_{V}$.

(b) Show that there exists $C_1, C_2 > 0$ independent on u and v such that

$$|a(u,v)| \le C_1 ||u||_V ||v||_V$$
 and $|L(v)| \le C_2 ||v||_V \quad \forall u, v \in V$.

2. Let the reference element be $\hat{K} = (0,0), (1,0), (0,1)$ and the reference basis functions

$$\hat{\varphi}_1(\hat{x}, \hat{y}) = 1 - \hat{x} - \hat{y} \quad \hat{\varphi}_2(\hat{x}, \hat{y}) = \hat{x} \quad \text{and} \quad \hat{\varphi}_3(\hat{x}, \hat{y}) = \hat{y}$$

Consider the element $K = (\frac{1}{2}, 0), (\frac{3}{2}, 2), (\frac{1}{2}, 1).$

- (a) Compute the affine mapping from \hat{K} to K
- (b) Give the definition of first order nodal based functions on element K. How are these functions related to reference basis functions?
- (c) Compute the gradient of each of the global basis functions.
- (d) Compute the entry (1,3) of the local stiffness matrix on element K related to the bilinear form $(\nabla u, \nabla v)$.

Hint: Inverse of any 2×2 -matrix can be computed as

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$
 (2)

3. Let $a:V\times V\to\mathbb{R}$ be a bilinear form and $L:V\to\mathbb{R}$ a linear functional. In addition, assume that L is bounded and a is continuous as well as elliptic. Consider the problem : find $u\in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V.$$
 (3)

Let $V_h \subset V$ and $u_h \in V_h$ be such that

$$a(u_h, v_h) = L(v_h) \quad \forall v_h \in V_h.$$

- (a) Formulate and prove Galerkin orthogonality property
- (b) Formulate and prove Cea's Lemma
- (c) Explain how Cea's lemma can be used to derive finite element error estimates.
- 4. Let $a:V\times V\to\mathbb{R}$ be a bilinear form and $L:V\to\mathbb{R}$ a linear functional. In addition, assume that L is bounded and a is continuous as well as elliptic.
 - (a) Let u be a solution to the problem: find $u \in V$ such that

$$a(u,v) = L(v) \quad \forall v \in V.$$
 (4)

Show that u the global minimiser of

$$J(u) = \frac{1}{2}a(u, u) - L(u).$$

(b) Let u be the global minimiser of

$$J(u) = \frac{1}{2}a(u, u) - L(u).$$

Show that u is a solution to : find $u \in V$ such that

$$a(u,v) = L(v) \quad \forall v \in V.$$
 (5)