MS-E1993 Time-Frequency Analysis (Aalto University) Turunen/Honkamaa

Examination (Friday 26.5.2017, 13:00-16:00)

Points also for good effort! Calculators and literature forbidden.

Remark: The Wigner distribution W[u] = W(u, u) is a special case of the Wigner transform W(u, v) of nice-enough signals $u, v : \mathbb{R} \to \mathbb{C}$, defined by

$$W(u,v)(x,\eta) := \int_{-\infty}^{\infty} e^{-i2\pi y \cdot \eta} u(x+y/2) v(x-y/2)^* dy.$$
 (1)

In your solutions, feel free to apply changes of variables, like

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} M(a, b) da db = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} M(x + y/2, x - y/2) dx dy.$$

- 1. How do we define the ambiguity transform? Show that the ambiguity transform is the symplectic Fourier transform of the Wigner transform.
- 2. a) Define the STFT (Short-Time Fourier Transform) of signal u with respect to window w. What is the corresponding spectrogram?
 - b) Explain how the densities $|w|^2$ and $|\widehat{w}|^2$ show up in the spectrograms of δ_p , e_0 , where δ_0 is the Dirac delta at time 0, and $e_0(x) \equiv 1$.
- 3. Let $C = \psi * W$ be a Cohen class time-frequency transform. The corresponding quantization $a \mapsto a_C$ is defined by $\langle u, a_C v \rangle := \langle C(u, v), a \rangle$.
 - a) Suppose C has correct marginals in time (what does this mean?). Show that then $a_C v(x) = f(x) v(x)$ whenever $a(x, \eta) = f(x)$.
 - b) Let $\phi = F\psi$ be the ambiguity kernel (where F is the symplectic Fourier transform) such that $|\phi| = 1$. Prove Moyal's formula

$$\langle C[v], C[g] \rangle = |\langle v, g \rangle|^2$$
.

4. The Born–Jordan transform $Q(u, v) = \psi * W(u, v)$ is defined by

$$Q(u,v)(x,\eta) := \int_{-\infty}^{\infty} e^{-i2\pi y \cdot \eta} \frac{1}{y} \int_{x-y/2}^{x+y/2} u(t+y/2) v(t-y/2)^* dt dy.$$

Find a simple expression for $K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, where

$$a_Q v(x) = \int_{-\infty}^{\infty} K(x, y) v(y) dy,$$

where the symbol $a = \delta_{(0,0)}$ is the Dirac delta distribution at the origin of the time-frequency plane. (Do not leave integrals in your solution.)