
ELEC-E8408 Embedded Systems Development

MODEL ANSWERS EXAM 7.4.2017

1. Are the following claims true (T) or false (F)? Every correct answer gives you +1 p, every incorrect –1 p, and an
empty answer is worth 0 p. The minimum amount of total points is 0 p and maximum 6 p.

a) Requirements elicitation involves gathering various requirements through a variety of techniques that may
include stakeholder interviews, company-wide workshops, and prototyping. T (textbook p. 199)

b) Software partitioning into multiple software units with low external coupling and high internal cohesion can
be achieved through the principle of information hiding. T (textbook p. 284)

c) A design pattern is a named problem–solution pair that can be applied in different contexts, with explicit
advice on how to apply it in new situations. T (textbook p. 295)

d) The KLOC metric takes into account the complexity of the software involved. F (textbook p. 420)
e) In general, testing can detect the absence of errors in embedded real-time software. F (textbook p. 448)
f) It is easier to develop platform-independent software code for multi-core platforms than for single-core ones.

F (textbook p. 488)

sovaska
Highlight

ELEC-E8408 Embedded Systems Development

MODEL ANSWERS EXAM 7.4.2017

2. Below is a Moore-type Finite State Machine (FSM) for the autonomous embedded control system of the Aalto-1
satellite. The primary state sequence S2–S3–S4 is meant to be executed at least once in every two minutes.

However, the FSM was drawn with a hurry and it contains six different fundamental defects. Identify each of them
and explain why they should be considered as defects. (1 p for each defect; maximum 6 p) (textbook pp. 205–209)

There are the following six different defects:

1. The initial state is not defined at all.
2. Event e2 triggers transitions from state S4 to both S1 and S2; while a transition from S4 (or any state) can

only go to a single state at a time (here either to S1 or S2).
3. The state between S2 and S7 has no label.
4. The transition from S3 to S4 has no label.
5. The state S6 is an isolated state without any entry or exit transition possibility (all states must be reachable).
6. The state S7 is a terminal state, but in this case, there cannot be any terminal states, because “The primary

state sequence S2–S3–S4 is meant to be executed at least once in every two minutes.” And this is a space
application where no external assistance is available for service/maintenance.

sovaska
Highlight

ELEC-E8408 Embedded Systems Development

MODEL ANSWERS EXAM 7.4.2017

3. Software engineering principles Generality (3 p) and Anticipation of Change (3 p) are seen advantageous for the
following software qualities: Interoperability, Maintainability, and Portability.

Why is there such a mapping between these principles and qualities? (textbook pp. 273–274, 278–280 and 281–
282; discussed thoroughly during the lectures)

Interoperability refers to the ability of the software to coexist and cooperate with other relevant software.

Maintainability can be broken down into two contributing properties: evolvability and repairability.

Portability of software is a measure how easily the software can be made to run in different environments.

Software undergoes changes during its lifecycle. One approach is to anticipate where changes are likely to occur
and make provisions for the changes during the design stage (for example, device drivers can be seen as a tool of
anticipation of change). The principle of anticipation of change recognizes also the complexity of the learning
process for both developers and their customers. And if a software component has several tasks rolled up into
one package, it is likely that it will need to be split up when changes are made.

While all these qualities, Interoperability, Maintainability and Portability, contain a significant “change” aspect, it
is natural that preparation for changes – or Anticipation of Change – makes it easier to enhance such desired
qualities.

3 p for answers with relevant core arguments.

A software engineer should consider what might be the underlying, hidden general problem that requires the
solution. The general problem may not be as complex as the original problem, or there may be a ready-made
solution library that is capable of satisfying the requirements. In addition, it is beneficial to design software in such
a way that it is free from unnatural restrictions and limitations (for example, use configurable parameters instead
of fixed constants). Generality is emphasized in both of these cases, as well as when creating interfaces between
software units.

Generality prepares the software for possible changes in the operating environment or use with somewhat
different specifications, and makes it possible to reuse existing “general” software components. This advances the
three desired software qualities.

3 p for answers with relevant core arguments.

sovaska
Highlight

sovaska
Highlight

ELEC-E8408 Embedded Systems Development

MODEL ANSWERS EXAM 7.4.2017

4. Describe three of the values listed in the Agile Manifesto (3 p) as well as three Agile Principles that you consider
important for embedded software development (3 p).

Definition: Agile Manifesto (textbook p. 308)

We are uncovering better ways of developing software by doing it and helping others do it. Through this work, we
have come to value:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

That is, while there is value on the items on the right, we value items on the left more.

Any combination of three of those four values is acceptable (1 p for each correct value).

Definition: Agile Principles (textbook p. 309)

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in development. Agile processes harness change for the

customer’s competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the

shorter time scale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they need, and trust

them to get the job done.
6. The most efficient and effective method of conveying information to and within a development team is face-

to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity—the art of maximizing the amount of work done—is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior

accordingly.

Any combination of three of those 12 principles is acceptable (1 p for each correct principle).

sovaska
Highlight

sovaska
Highlight

ELEC-E8408 Embedded Systems Development

MODEL ANSWERS EXAM 7.4.2017

5. Explain the principles of black-box and white-box testing (3 p), and compare their advantages and disadvantages
in software unit testing (3 p). (textbook pp. 449–450)

Black-box tests are data driven.

In black-box testing, only inputs and outputs of the code are considered; how the outputs are generated based on
a particular set of inputs is totally ignored.

For each software unit, a number of test cases can be generated. This number depends on the number of inputs,
the functionality of the software unit, and so forth.

Black-box testing techniques include: Exhaustive testing, Boundary-value testing, Random test-case generation,
and Worst-case testing.

If a software unit fails to pass a unit-level test, then the detected error must be repaired, and all previous unit-
level test cases are rerun to prevent the repair from causing other errors.

White-box tests are logic driven.

They are designed to exercise all paths in the code unit.

1.5 p + 1.5 p for correct black-box and white-box answers.

Black-box testing, being independent of the implementation of the software unit, can be applied to any number
of units with the same functionality.

This technique does not provide any insight into the programmer’s skills in implementing the software unit.
Consequently, dead or unreachable code cannot be detected.

In addition, it may not test all of the flow paths in the software unit.

An important aspect of using black-box testing techniques is that clearly defined interfaces to the software units
are required.

White-box tests exercise all flow paths of the code unit and provide also insight into the programming style.

White-box testing has the advantage that it can discover those code paths that cannot be executed. Such
unreachable code is undesirable because it is likely a sign that the underlying logic is incorrect, because it wastes
memory space, and since it might inadvertently be executed in the case of the corruption of the CPU’s program
counter.

1.5 p + 1.5 p for correct black-box and white-box answers.

sovaska
Highlight

sovaska
Highlight

