Exam: Geodesy and Positioning (GIS-E1010) 03.11.2016

(Function calculator)

1. Fundamentals

(a) [3p] The flattening of the Earth. How does the internal distribution of the Earth's masses affect its flattening? Newton's and Huygens' ideas and modern understanding.
(b) [3p] Explain the concept of height datum, and give an example.

2. Statistics, units

(a) $[3 \mathrm{p}]$ A plane triangle has three angles measured, $\alpha=62^{\circ} .10 \pm 0^{\circ} .01, \beta=67^{\circ} .57 \pm 0^{\circ} .02$ and $\gamma=$ $50^{\circ} .26 \pm 0^{\circ} .02$.
i. Calculate the sum of the measured angles and its uncertainty (mean error) using propagation of variances. You may assume the angle measurements to be statistically independent, i.e., uncorrelated.
ii. Compare the values obtained. Conclusion?

(b)
[3p] In parapsychology, Zener cards (figure) have been used. A pack consists of 25 cards: a circle counts for 1 , a cross for 2 , waves for 3 , a square for 4 , and a star for 5 . Compute the expectancy if a card is drawn blind from the pack.
Equation:

$$
E(\underline{n})=\sum_{i=1}^{N} i \cdot p(i)
$$

where $p(i)$ is the probability that the card's value is i, and N is the total number of possible values.

3. Measurement instruments and methods

(a) [2p] The focusing of a measurement telecope. What is parallax?
(b) [2p] Explain the orbit data transmitted by the GPS satellites themselves (broadcast ephemeris) and so-called precise ephemeris. How are the latter disseminated to the users?
(c) [2p] Explain the idea behind the GRACE mission. GRACE $=$ Gravity Recovery And Climate Experiment.

4. Forward and inverse geodetic problems

(a) [3p] Given a point $A: x_{A}=6645000 \mathrm{~m}, y_{A}=500000 \mathrm{~m}$. The distance to point B is $s=1414.214 \mathrm{~m}$ and the azimuth (direction angle) $t=150$ gon. Solve the first (forward) geodetic problem for points A, B.
(b) [3p] Given is also point C with coordinates $x_{C}=6643000 \mathrm{~m}, y_{C}=498000 \mathrm{~m}$. Solve the second (inverse) geodetic problem for the points A, C.

Grade ($36 \mathrm{p}=100 \%$)

$$
\text { Grade }=1+8 \times(\text { Exam }-50 \%)+4 \times(\text { Exercises }-50 \%)
$$

A minimum of 50% is required for both exam and exercises.

