Exam: Geodesy and Positioning (GIS-E1010) 07.04.2017

(Function calculator)

1. Fundamentals

(a) [3p] The flattening of the Earth. How does the interior distribution of the Earth's masses influence her flattening? The ideas of Newton and Huygens and current understanding.
(b) [3p] Polar motion and length-of-day (LOD) variations. How do they behave and what causes them, as well as available observation techniques.

2. Statistics, units

(a) [3p] A plane triangle has three angles measured, $\alpha=62^{\circ} .10 \pm 0^{\circ} .02, \beta=67^{\circ} .57 \pm 0^{\circ} .03$ and $\gamma=$ $50^{\circ} .29 \pm 0^{\circ} .06$.
i. Calculate the sum of the measured angles and its uncertainty (mean error) using propagation of variances. You may assume the angle measurements to be statistically independent, i.e., uncorrelated.
ii. Compare the values obtained. Conclusion?
(b) [3p] We have 52 playing cards, with values: the number value $2-10$; ace is 1 , jack is 11 , queen is 12 , king is 13 . Compute the expectancy if a card is drawn blind from the pack.
Equation:

$$
E(\underline{n})=\sum_{i=1}^{13} i \cdot p(i)
$$

where $p(i)$ is the probability that the card's value is i.

3. Measurement instruments and methods

(a) [2p] What is the collimation error of a theodolite, and how does one determine it?
(b) $[2 \mathrm{p}]$ The observation equation for code based pseudo-ranges is

$$
p=\rho+c(\Delta t-\Delta T)+d_{\mathrm{ion}}+d_{\mathrm{trop}}
$$

where

$$
\rho=\sqrt{(x-X)^{2}+(y-Y)^{2}+(z-Z)^{2}} .
$$

Explain the meanings of the symbols appearing in the equations.
(c) [2p] Explain the idea behind the GOCE mission. GOCE $=$ Gravity Field and Steady-State Ocean Circulation Explorer.

4. Forward and inverse geodetic problems

(a) [3p] Given a point $A: x_{A}=6642000 \mathrm{~m}, y_{A}=502000 \mathrm{~m}$. The distance to point B is $s=1414.214 \mathrm{~m}$ and the azimuth (direction angle) $t=50$ gon. Solve the first (forward) geodetic problem for points A, B.
(b) [3p] Given is also point C with coordinates $x_{C}=6640000 \mathrm{~m}, y_{C}=500000 \mathrm{~m}$. Solve the second (inverse) geodetic problem for the points A, C.

Grade ($24 \mathrm{p}=100 \%$)

$$
\text { Grade }=1+8 \times(\text { Exam }-50 \%)+4 \times(\text { Exercises }-50 \%)
$$

A minimum of 50% is required for both exam and exercises.

