

PHYS-E0413 Theoretical Mechanics Midterm exam Friday 27.10.2017

- 1. Explain following concepts biefly (max 1p each)
 - (a) Holonomic constraint
 - (b) Action
 - (c) Hamilton's principle
 - (d) Lagrange equation
 - (e) Generalized momentum
 - (f) What does it mean if we say lagrangian has a symmetry?
- 2. Pendulum of length I and mass m (string/rod of the pendulum is massless) hangs from the roof of a moving car. Car is accelerated (on a horizontal track) with acceleration a from the initial velocity v_0 . (Gravity acts in vertical direction with acceleration g.) Use the pendulum angle θ as the generalized coordinate.
 - a) Find the Lagrangian for the pendulum $L(\theta, \dot{\theta}, t)$. (2p)
 - b) Derive the equation of motion. (2p)
 - c) What is the equilibrium angle of the pendulum? Discuss to what extent you can monitor the velocity and acceleration of the car by observing the behavior of the pendulum? (2p)
- 3. Dynamical system $(q_1 \text{ and } q_2 \text{ are coordinates}, k_1 \text{ is a constant and } f(q_1) \text{ is a function of } q_1)$ has a Lagrangian

$$L = \dot{q}_1^2 + f(q_1)\dot{q}_2^2 + k_1q_1^2. \tag{1}$$

- a) Determine the Hamiltonian. (3p.)
- b) Find the Hamilton's equations of motion for the system. (2p.)
- c) Identify possible cyclic coordinates and associated conserved quantities. (1p.)
- 4. For notational simplicity assume we have only one generalized coordinate q and generalized momentum p. Poisson bracket of two functions of (q, p) is defined as

$$\{f_1, f_2\} \equiv \frac{\partial f_1}{\partial \mathbf{q}} \frac{\partial f_2}{\partial \mathbf{p}} - \frac{\partial f_1}{\partial \mathbf{p}} \frac{\partial f_2}{\partial \mathbf{q}}.$$
 (2)

- a) Show that the time-evolution of function f(q, p, t) is given by $df/dt = \{f, H\} + \partial f/\partial t$, where H is the Hamiltonian. (3p.)
- b) Transformation between coordinates and momenta $(q, p) \to (Q, P)$ (assume again only one pair for simplicity) is canonical if it preserves the Poisson bracket between coordinates and momenta. If $Q = q^n$ and $P = (p/2q)^m$, how could you choose n and m for the transformation to be canonical? (3p.)

Remember to answer in english unless you have a special permission to use some other language. Write your name, student number, study program, course code, and the date in all your papers. Use of calculators is forbidden.