The exam is three hours long and consists of 4 exercises. The exam is graded on a scale of 0-25 points, and the points assigned to each question are indicated in parenthesis.

Problem 1

(a) Solve the following problem P by using the Dual Simplex algorithm. (6pt)

(P) Minimize
$$3x_1 + x_2 + x_3$$

s.t. $2x_1 - 2x_2 + x_3 \le 11$
 $4x_1 - x_2 - 2x_3 \le -3$
 $-2x_1 + x_3 \le 1$
 $x_1, x_2, x_3 \ge 0$.

(b) Write the dual of P. (1pt)

Problem 2

Consider the following tableau for a minimization problem.

	-z	x_1	x_2	x_3	x_4	x_5
	-10	c	2	0	0	0
$x_3 =$	4	-1	a_1	1	0	0
$x_4 =$	1	a_2	-4	0	1	0
$x_5 =$	b	a_3	3	0	0	1

Give conditions on the unknown parameters b, c, a_1 , a_2 , a_3 that make the following statements true:

- (a) The current (primal) basic solution is optimal. (1pt)
- (b) The current basic solution is optimal and there are alternative (different) optimal solutions. (1pt)
- (c) The LP is unbounded (i.e., the optimal cost is $-\infty$). (1pt)
- (d) The current (primal) basic solution is not feasible. (1pt)
- (e) The current (primal) basic solution is feasible but the objective value can be improved by bringing x_1 into the basis and removing x_4 from the basis. (1pt)
- (f) The tableau is obtained at some iteration of the Dual Simplex method, and indicates that the dual problem is unbounded (the optimal dual cost is $+\infty$). (1pt)

Problem 3

Consider the following problem

(P) Minimize
$$-15x_1 - 8x_2 - 10x_3 - 12x_4$$

s.t. $x_1 + 2x_2 + x_4 \le 20$
 $x_1 + x_2 + x_3 + x_4 \le 54$
 $2x_1 + x_3 + x_4 \le 36$
 $x_1, x_2, x_3, x_4 \ge 0$.

and the corresponding optimal tableau where x_5 , x_6 and x_7 are slack variables

	-z	x_1	x_2	x_3	x_4	x_5	x_6	x_7
	440	9	0	0	2	4	0	10
$x_2 =$	10	$\frac{1}{2}$	1	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_6 =$	8	$-\frac{3}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	1	-1
$x_3 =$	36	2	0	1	1	0	0	1

Let \mathbf{x}^* be the basic optimal solution associated with this tableau and \mathbf{B} the corresponding basis matrix. Answer the following questions (each of the questions is independent from the others).

- (a) Find \mathbf{B}^{-1} and the optimal dual solution \mathbf{p}^* . Explain why \mathbf{B}^{-1} and \mathbf{p}^* can be obtained from the tableau. (2pt)
- (b) If one of the right hand sides could be increased by an amount δ , which one is the most profitable to increase, and what is the range of values of δ that maintains B optimal? (2pt)
- (c) Suppose that the cost of variable x_1 is changed to $-15 + \delta$. What is the range of values of δ that maintains **B** optimal? (2pt)

Problem 4

Consider the uncapacitated network flow problem defined on the directed graph below. The number next to each arc (i, j) is its cost c_{ij} .

Consider the tree T defined by the solid red arcs in the graph. Solve the problem by using the Network Simplex starting from the tree solution defined by T. (6pt)

- (i) Indicate the set T and report the arc flows at each iteration
- (ii) Report the dual variables at each iteration
- (iii) Explain how the leaving and entering variables are selected
- (iv) Explain how the flows are updated